Filename: gfxICEEngine.h

Infinite Canvas Engine (ICE) Application Programming Interface (API)

+
+
+

Introduction to the ICE Drawing Engine
Quick Function Reference Guide

The ICE Drawing Engine API

ICE Drawing Engine API version number
Fundamental Data Types

Memory Allocation

ICE Instances

ICE Canvases

ICE Layers

Drawing

Rendering Canvases and Layers
Transforming Canvases and Layers
Selection

Undo and Redo

Saving and Loading ICE Canvases

+ + + o+ o+ o+

The Infinite Canvas Engine (ICE) Advantage

The ICE Drawing Engine uses a new approach for digital drawing which allows the
creation of detailed and textured artwork typical of pixel-based systems such as
Adobe Photoshop but with the infinite, artifact-free scalability and small memory
footprint of vector-based (SVG) systems such as Adobe Illustrator. ICE provides
the following advantages over today's digital drawing systems and representations:

+

+

The ability to create graphical elements that exhibit the richness of pixels
with the artifact-free scalability and small size of SVG.
An infinite canvas in both spatial (x and y) extent and scale (z) thereby
providing seamless infinite zoom and infinite definition, features not
available in any other system.
A new multi-scale rendering algorithm for image textures that enables a wide
variety of scanned paper textures to be rendered at any scale (infinite paper).
Very small file sizes, providing an ideal solution for memory- or bandwidth-
limited environments.
High-quality tunable anti-aliased rendering. Support for a wealth of primitives
such as variable width textured strokes with intricate sub-pixel features.
Realtime fast rendering by exploiting the massive parallelism inherent in GPUs
enabling immediate feedback during drawing and interactive canvas
transformations.
An enabling technology for a novel representation of existing pixel-based
images that provides the intricate detail and texture that pixels allow but
with the small size and artifact-free transformations only available with SVG.
An enabling technology for a novel representation of maps (and possibly other
ubiquitous graphical forms) that provides not only better appearance, size,
quality, and performance characteristics but functionality (such as seamless
infinite zoom) previously not possible.
An internal representation that enables stylization for different looks and
levels of abstraction.
Support for layers, an indispensable metaphor for content creation, and map
design principles.
A superior drawing experience for content creators:

+ A natural, smooth, pencil-on-paper feel, where pen strokes match the

artist's input precisely

+ Immediate visual feedback during drawing due to on-the-fly curve fitting
and fast rendering

+ A rich assortment of pressure-sensitive, customizable, scalable, textured
pens

+ An organic, free flowing drawing experience where ideas can be expanded
without bounds, both spatially and in z, due to the infinite canvas which
requires no upfront planning regarding size and resolution

+ The ability to create seamless, hierarchical, multi-resolution, story
within a story experiences not possible with the current state of the art
systems such as Adobe Photoshop and Adobe Illustrator.

An Overview of the ICE Drawing Engine

+ A ICE instance is a thread-safe instantiation of the ICE Drawing Engine.
Because ICE instances are completely independent, they can be assigned to
separate cores and run concurrently.

+ A ICE instance has a set of canvases. A ICE canvas has

+ An opaque paper background, which can be defined as a solid color, an image-
based paper texture, or a procedural paper texture. If multi-scale rendering
is enabled, paper textures exhibit a fractal-like quality when rendered so
that, when a canvas is zoomed, the individual features of a paper texture
are scaled while the characteristic structure of the paper texture is
maintained. The multi-scale rendering method eliminates the aliasing and
pixelization artifacts that are typical when scaling images, thereby
allowing applications to use a wide variety of scanned paper textures for
the paper background. Both RGB and grayscale paper textures are supported.
Paper textures can be colorized with a specified RGB value. In addition,
the strength of the individual features in a paper texture can be modulated
between 0 and 1.

+ An ordered list of canvas layers upon which to draw, where

+ Layers reside above the paper background

Drawing occurs on the currently active layer, with the active layer set

by the application

Layers can be added, removed, cleared, re-ordered, and merged

Layers can be individually translated, rotated, and scaled

Layer visibility can be turned on or off

Layer opacity can be set between zero (fully transparent) and one

(fully opaque)

+ A current pen is maintained for each ICE canvas and used for drawing on the
active layer of a canvas. Pen attributes such as type, color, width, and
pressure sensitivity can be set and customized by the application.

+ A selection buffer is maintained for each ICE instance to enable cut, copy,
and paste operations

+ A history list of reversible operations is maintained for each canvas to
facilitate infinite undo and redo. The reversible operations include 1) drawing
operations (i.e., adding freehand strokes, stroked geometric shapes, and images
to the canvas), 2) cutting and pasting selections, 3) adding, deleting,
clearing, moving, and merging layers, and 4) applying transformations to layers.
The ICE Drawing Engine does not directly support undo and redo for other
operations such as changing drawing or layer attributes, applying
transformations to canvases, or creating and destroying canvases; it is the
application's responsibility to provide the necessary support for undo and redo
for such operations if so desired.

+ When a canvas is rendered, each layer is first rendered independently by
compositing its drawing operations in the order in which they were drawn. Next,
each rendered layer, modulated by its opacity, is composited (in order) onto the
canvas paper using the conventional graphics over operator (see Porter and Duff,
1984); this is equivalent to blending layers using the 'Normal' blend mode in
Adobe Photoshop.

+ A canvas 1s viewed, drawn on, and manipulated through a canvas viewport. A
canvas viewport is specified by a width w and height h in pixels and an offset
from the bottom-left corner of a display window. Note that the ICE Drawing
Engine assumes a Cartesian coordinate system; the origin (0,0) of a canvas
viewport lies at its bottom-left corner, with x increasing from 0 to w-1 along
its bottom edge and y increasing from 0 to h-1 along its left edge. When drawing

—+

+ + + +

on or manipulating a canvas, positions are specified by floating point pixel
values in canvas viewport coordinates. The use of floating point pixel wvalues
enables sub-pixel accuracy during drawing, allowing applications to take full
advantage of the sub-pixel accuracy available from most graphics tablets.

A canvas has both infinite spatial extent and infinite zoom (subject to floating
point representation limits for canvas transformations); the rectangular region
of the canvas that is viewed through the canvas viewport is determined by a
canvas transform.

The canvas transform positions, scales, and rotates the canvas relative to the
canvas viewport. When the canvas transform is set to the identity, the canvas
origin maps to the bottom-left corner of the canvas viewport, its x- and y-axes
map to the bottom and left edges of the canvas viewport, respectively, and one
unit in the canvas corresponds to one pixel in the canvas viewport.

Both on-screen and off-screen rendering of a canvas are supported. For on-
screen rendering, a rectangular region of the canvas is rendered to the canvas
viewport. The specific rectangular region is determined by the canvas transform.
For off-screen rendering, a rectangular region of the canvas, specified in
canvas viewport coordinates, is rendered to an image. The size of the off-screen
image (i.e., its dimensions in image pixels) 1s set independently by specifying
the width of the off-screen image in pixels (the image height is computed by the
ICE Drawing Engine to preserve the aspect ratio of the rectangular region);

this permits any rectangular region of the canvas to be rendered off-screen at
any resolution.

Off-screen rendering of individual layers 1is also supported and provides
compatibility with pixel-based applications that support layers. For example,
individual layers can be rendered off-screen (by the ICE Drawing Engine) and
written to disk (by the application) in Adobe's PSD format. The resultant PSD
file can then be read into Adobe Photoshop for further processing.

+ Methods are provided so that an entire canvas or a specified rectangular region

of a canvas can be saved to and reloaded from a file. Both lossless and lossy
compression are supported.

Technical Requirements and Assumptions

+ The ICE Drawing Engine requires OpenGL 2.0 or greater and the OpenGL

Extension Wrangler (GLEW) library (glew.h contains the OpenGL API). Note that
GLSL (GL Shading Language), which is used by the ICE Drawing Engine, was
formally included into the OpenGL 2.0 core by the OpenGL ARB.

Both on-screen and off-screen rendering make use of the graphics processing
unit (GPU)

+ On-screen rendering renders a canvas into its canvas viewport in the OpenGL
back buffer. The application is responsible for transferring the canvas
viewport to the OpenGL front buffer for display. The transfer can be
performed using a bitblt or by swapping the OpenGL back and front buffers.

+ Off-screen rendering renders a canvas or layer into a GFX Image which is
then provided to the application. The application is responsible for
freeing the GFX Image when it is no longer needed.

+ Both on-screen and off-screen rendering make use of the OpenGL back buffer.
Consequently, the width and height of the canvas viewport should be no
bigger than the width and height of the OpenGL back buffer, respectively.
For off-screen rendering, the size of the image is not limited by the size
of the canvas viewport. However, off-screen rendering is more efficient
when the canvas viewport is as large as possible (i.e., the same size as
the OpenGL back buffer).

The application must configure the OpenGL back buffer to enable RGBA rendering
with support for both a depth buffer (with a minimum bit depth of 24 bits) and
a stencil buffer (with a minimum bit depth of 1 bit). Selecting hardware
accelerated pixel formats that satisfy these requirements will provide optimal
performance.

Due to the high cost of OpenGL state changes in most OpenGL implementations,
applications must carefully manage OpenGL state to achieve optimal performance.
The ICE Drawing Engine assumes that OpenGL is in its default state when
rendering (i.e., when gfxRenderCanvas or gfxRenderTolImage is invoked);
applications can use various OpenGL functions, such as glPushAttrib and
glPopAttrib, to meet this expectation. To improve performance, the ICE

Drawing Engine uses as little OpenGL state as possible. Any OpenGL state used

by the ICE Drawing Engine will be reset to its default value after rendering.
+ Drawing with the ICE Drawing Engine is greatly enhanced by the use of a
graphics tablet with pressure sensitive pen input and sub-pixel accuracy

ICE Instances

void *gfxCreateICEInst (GFX ICEInstAttrs *instAttrs)

void gfxDestroyICEInst (void *ICEInst)

void gfxSetICEInstAttrs (void *ICEInst, GFX ICEInstAttrs *instAttrs)
void gfxGetICEInstAttrs (void *ICEInst, GFX ICEInstAttrs *instAttrs)
GFX I32 gfxGetError (void *ICEInst)

ICE Canvases

void *gfxCreateCanvas (void *ICEInst, GFX CanvasAttrs *canvasAttrs)
void gfxDestroyCanvas (void *canvas)

void gfxSetCanvasAttrs (void *canvas, GFX CanvasAttrs *canvasAttrs)
void gfxGetCanvasAttrs (void *canvas, GFX CanvasAttrs *canvasAttrs)

ICE Layers

void gfxAddLayer (void *canvas, GFX LayerAttrs *layerAttrs)

void gfxDeletelLayer (void *canvas)

void gfxSetLayerAttrs (void *canvas, GFX I32 idxLayer, GFX LayerAttrs *layerAttrs)
void gfxGetLayerAttrs (void *canvas, GFX I32 idxLayer, GFX LayerAttrs *layerAttrs)
void gfxClearLayer (void *canvas)

void gfxClearAllLayers (void *canvas)

void gfxMoveLayer (void *canvas, GFX I32 dstIdx)

void gfxMergelLayerDown (void *canvas)

Drawing

void gfxInitDrawing (void *canvas, GFX DrawingAttrs *drawingAttrs)
void gfxUpdateDrawing (void *canvas, GFX DrawingAttrs *drawingAttrs)
void gfxFinalizeDrawing (void *canvas, GFX DrawingAttrs *drawingAttrs)

Rendering Canvases and Layers

void gfxSetCanvasViewport (void *canvas, GFX Rect *canvasViewport)

void gfxGetCanvasViewport (void *canvas, GFX Rect *canvasViewport)

void gfxRenderCanvas (void *canvas)

GFX Image *gfxRenderToImage (void *canvas, GFX RenderTolImageAttrs *renToImgAttrs)

Transforming Canvases and Layers

void gfxResetCanvasXform (void *canvas)

void gfxInitCanvasXform (void *canvas, GFX XformAttrs *xFormAttrs)
void gfxUpdateCanvasXform (void *canvas, GFX XformAttrs *xFormAttrs)
void gfxFinalizeCanvasXform (void *canvas, GFX XformAttrs *xFormAttrs)
void gfxResetlLayerXform (void *canvas)

void gfxInitLayerXform (void *canvas, GFX XformAttrs *xFormAttrs)

void gfxUpdateLayerXform (void *canvas, GFX XformAttrs *xFormAttrs)
void gfxFinalizeLayerXform (void *canvas, GFX XformAttrs *xFormAttrs)

// Selection

// GFX I32 gfxCutSelection (void *canvas, GFX Rect *selectionRect)

// GFX 132 gfxCopySelection (void *canvas, GFX Rect *selectionRect)

// void gfxPasteSelection (void *canvas, GFX F32 x, GFX F32 vy)

// GFX I32 gfxInitSelectionXform (void *canvas, GFX Rect *srcRect);

// void gfxUpdateSelectionXform (void *canvas, GFX RotatedRect *dstRect)
// void gfxFinalizeSelectionXform (void *canvas, GFX RotatedRect *dstRect)

// Undo and Redo

// void gfxUndo (void *canvas)
// void gfxRedo (void *canvas)
// void gfxUndoAll (void *canvas)
// void gfxRedoAll (void *canvas)

// Saving and Loading a ICE Canvas
// GFX I8 *gfxSaveCanvas (void *canvas, GFX I32 format)

// GFX I8 *gfxSaveCanvasRegion (void *canvas, GFX Rect *saveRegion, GFX I32 format)
// void *gfxLoadCanvas (void *ICEInst, GFX I8 *byteStream)

#ifndef GFX ICE API
#define GFX ICE API

#ifdef cplusplus
extern "C" {

#endif

[e e
// ICE DRAWING ENGINE API VERSION NUMBER
e
f) m e e

// The 16 most significant bits of GFX ICE API VER NUMBER identify the major

// revision number of the ICE Drawing Engine API; the 16 least significant bits
// of GFX ICE API VER NUMBER identify the minor revision number of the ICE

// Drawing Engine API.

// This is version 1:3 (Major:Minor) of the ICE Drawing Engine API.

// Fundamental data types for characters, integers, and floating point numbers.
// Applications should modify these definitions based on their target platform and
// compiler settings.

[m T o
typedef char GFX I8;
typedef short GFX I16;
typedef int GFX I32;
typedef long long GFX I64;
typedef unsigned char GFX US8;
typedef unsigned short GFX Ul6;
typedef unsigned int GFX U32;
typedef unsigned long long GFX U64;
typedef float GFX F32;
typedef double GFX F64;
/=

// Applications should set GFX INLINE to the keyword used by their compiler to
// identify inline functions. The default setting is _ inline, the keyword used by
// the Microsoft Visual Studio 2008 compiler to identify inline functions.

[m e
// Data representation for pen points
[m T o
typedef struct ({

GFX F32 x; // Pen x-coordinate

GFX F32 y; // Pen y-coordinate

GFX F32 p; // Pen pressure value with range [0,1]

} GFX Point;

/=
// Data representation for an axis-aligned rectangle
/e
typedef struct {

GFX F32 x; // x-coordinate of bottom-left corner of the rectangle

GFX F32 y; // y-coordinate of bottom-left corner of the rectangle

GFX F32 w; // Rectangle width

GFX F32 h; // Rectangle height

} GFX Rect;

/=
// Data representation for a rotated rectangle
/= e
typedef struct ({

GFX F32 cx; // x-coordinate of the center point of the rectangle

GFX F32 cy; // y-coordinate of the center point of the rectangle

GFX F32 w; // Rectangle width

GFX F32 h; // Rectangle height

GFX F32 angle; // Rotation angle, in degrees, about the center point (cx,cy)
} GFX_ RotatedRect;

// Data representation for images. Images are input to or output from the ICE
// Drawing Engine as a byte stream via this data structure.

// The ICE Drawing Engine supports a set of compressed image formats (e.g., JPEG) and
// a set of simple raw image formats. When a compressed image format is specified,
// the byteStream element of a GFX Image points to a buffer containing the compressed
// 1image. When a raw image format is specified, the byteStream element points to a

// buffer that consists of a 32-bit width, followed by a 32-bit height, followed by
// the raw image data stored in row major order, with the first elements of the data
// comprising the components of the bottom-left corner of the image. The raw image

// data is represented as a sequence of 8 bit components: interleaved R,G,B,R,G,B, ...

// for RGB raw images; interleaved R,G,B,A,R,G,B,A,... for RGBA raw images; and

// G,G,G,... for grayscale raw images.

) e e
e

#define GFX IMAGE RGB JPEG O // RGB JPEG image format
#define GFX IMAGE RGB RAW 1 // A simple RGB raw image format
#define GFX IMAGE RGBA RAW 2 // A simple RGBA raw image format
#define GFX IMAGE GRAY RAW 3 // A simple grayscale raw image format
#define GFX IMAGE RGB_ PNG 4 // RGB PNG image format

5

#define GFX IMAGE RGBA PNG // RGBA PNG image format

[mm e
/) m T oo
typedef struct ({

GFX_I32 format; // GFX_IMAGE RGB JPEG, GFX IMAGE RGB_RAW,

GFX I32 sizeInBytes; // Size of the image byte stream in bytes

GFX I8 *byteStream; // Pointer to the image byte stream

} GFX Image;

/=
// Data representation for general purpose textures (e.g., for defining paper
// textures for canvases). appData is a GFX I32 value that can be set and used by

// the application to associate application-specific data with a GFX Texture.

// Currently, only GFX IMAGE RGB JPEG image-based textures are supported. Future
// releases of the ICE Drawing Engine will incorporate additional texture types

// (such as procedural textures that are not image-based) and their corresponding
// attributes in the GFX Texture data structure.
/=
[m e
#define GFX TEXTURE TYPE IMAGE O // Image-based texture
/) m T oo
/=
typedef struct ({

GFX I32 type; // Currently only GFX TEXTURE TYPE IMAGE is supported

GFX I32 appData; // Application-specific data

GFX Image textureImage; // Texture image data for GFX TEXTURE TYPE IMAGE type
} GFX Texture;

// The following typedefs define function pointers for all memory allocation tasks
// performed by this system. The last argument to each memory allocation function

// 1s an opaque pointer memAppData to application specific data. The application can
// specify its own memory allocation function pointers when a ICE instance is

// created; if the function pointers are not specified, the C-library malloc, free,
// and realloc functions are used and memAppData is ignored.

// GFX MallocFP returns a pointer to space for an object of size numBytes, or NULL
// 1f the request cannot be satisfied. The space is uninitialized.

// GFX FreeFP deallocates the space pointed to by object; it does nothing if object
// ~is NULL. object must be a pointer to space previously allocated by GFX MallocFP
// or GFX ReallocFP.

// GFX ReallocFP changes the size of object to numBytes. object must be a pointer to
// space previously allocated by GFX MallocFP or GFX ReallocFP. The contents of

// object will be unchanged up to the minimum of the old and new sizes of object.

// If the new size of object is larger, the additional space is uninitialized.

// GFX ReallocFP returns a pointer to the reallocated space for object, or NULL if
// the request cannot be satisfied, in which case object is unchanged. Note that the
// returned pointer may be different than the input (object) pointer.

typedef void* (*GEFX MallocFP) (size t numBytes, void *memAppData) ;
typedef void (*GFX FreeFP) (void *object, void *memAppData) ;
typedef void* (*GFX ReallocFP) (void *object, size t numBytes, void *memAppData) ;

T
// ICE INSTANCES

/= o
/=
// A ICE instance includes the following elements

// 4+ The canvases of the ICE instance

// 4+ A selection buffer for supporting cut, copy, and paste operations

// 4+ ICE instance attributes including

// + Memory allocation function pointers and memAppData

// + A flag indicating whether the selection buffer is empty or not

// + The most recent error code for the ICE instance. Every ICE function call

// associated with a ICE instance sets the error code for the ICE instance

// prior to returning.
e
T
// Public Data Structures

/= o
/=

// The data structure for ICE instance attributes and related constants. Bit

// flags (BFs) are used for setting and getting ICE instance attributes. For

// example, to set the ICE instance memory function pointers, the application

// might declare a GFX ICEInstAttrs variable instAttrs, set instAttrs.bitFlags to

// GFX BF MALLOC FP | GFX BF FREE FP | GFX BF REALLOC FP, and set instAttrs.mallocFP,
// instAttrs.freeFP, and instAttrs.reallocFP to appropriate function pointers. Next,
// the application would call gfxSetICEInstAttrs with a pointer to instAttrs and

// the ICE Drawing Engine would set its internal state accordingly. An analogous

// procedure is used for getting ICE instance attributes.

R

=

#define GFX BF MALLOC FP 0x0001

#define GFX BF FREE FP 0x0002

#define GFX BF REALLOC FP 0x0004

#define GFX BF MEM APP DATA 0x0008

#define GFX BF SELECTION BUF STATE 0x0010

e

e

#define GFX_ SEL BUFFER EMPTY 0

#define GFX_ SEL BUFFER FULL 1

ettt

T

typedef struct {
//===-=Set/get bit flags—=—=—————=——"—"="—"—"—"—"——""—"—"—"—~~—
GFX I32 bitFlags; // Bitwise OR of bit flags for set/get of instance attrs
e
//----Memory function pointers and application specific data-------------------—-
GFX MallocFP mallocFP; // Memory malloc fn ptr; defaults to C-library malloc
GFX FreeFP freeFP; // Memory free fn ptr; defaults to C-library free
GFX ReallocFP reallocFP; // Memory realloc fn ptr; defaults to C-library realloc
void *memAppData; // Opaque ptr of app data for mem fns; defaults to NULL
e ittt bl bt
//----Selection buffer state---—------"""""""""""-""""""""""
GFX_I32 selBufferState; // GFX SEL BUFFER EMPTY or GFX SEL BUFFER FULL
e

} GFX ICEInstAttrs;

// Create a thread-safe ICE instance. Specific instance attributes can be

// specified when the ICE instance is created by setting the corresponding bit
// flags in instAttrs (using the convention described in the GFX ICEInstAttrs

// data structure comment block). Default values (see above) are used for any

// attributes that are not identified by instAttrs->bitFlags. Alternatively, if
// instAttrs is NULL, default values are used for all attributes. This function
// returns an opaque pointer to the ICE instance upon success; a NULL pointer is
// returned if the request cannot be satisfied.

// Destroy (recursively) the specified ICE instance and all of its associated
// data structures (e.g., 1its canvases, the layers comprising each canvas, etc.)

void gfxDestroyICEInst (void *ICEInst);

// Set the requested ICE instance attributes for the specified ICE instance.

// Note that changing certain instance attributes of a ICE instance from values

// specified when the ICE instance was created (e.g., the memory function

// pointers) may have undesirable consequences. Note also that the application can
// only observe the selection buffer state; it cannot set the selection buffer

// state.

// Return the most recent error code for the specified ICE instance. Every ICE
// function call associated with a ICE instance sets the error code for the
// ICE instance prior to returning.

#define GFX _ERR NO ERROR 0
#define GFX_ERR INSUFFICIENT CPU MEMORY 1
#define GFX_ERR INSUFFICIENT GPU MEMORY 2
#define GFX _ERR INSUFFICIENT GL_ SUPPORT 3
#define GFX _ERR INSUFFICIENT GPU SUPPORT 4
#define GFX_ERR UNSUPPORTED FEATURE 5
#define GFX_ERR INVALID INPUT 6
#define GFX ERR INTERNAL ERROR 7
#define GFX _ERR FINALIZE DRAWING REQUIRED 8
#define GFX _ERR FINALIZE XFORM REQUIRED 9

// A ICE canvas has the following elements
+ Canvas attributes including
+ Canvas layer data such as

//
//
//
//
//
//
//

//

+

An ordered list of layers, sorted from bottom-most (i.e., closest to
the paper) to top-most. Layers are identified by their index in this
list; layer indices run from zero (for the bottom-most layer) to N-1
(for the top-most layer), where N is the number of layers in the list.
The index of the currently active layer. Note that a valid index for
the active layer of a canvas with N layers lies between zero and N-1;
if the canvas does not have an active layer (e.g., if the layer list is
empty), the index of the currently active layer is negative.

+ Attributes of the canvas paper such as

+
+
+

+

Paper type, e.g., a solid color or image-based paper texture

Paper color for solid color papers or colorized paper textures

Paper texture strength in the range [0,1] for modulating the strength of
individual features of a paper texture

A Boolean determining if paper textures are colorized. If the Boolean is
true, paper textures are colorized with the paper color.

A Boolean determining if multi-scale rendering is used to render paper
textures. If multi-scale rendering is used, paper textures exhibit a
fractal-like quality when rendered so that, when a canvas is zoomed, the
individual features of a paper texture are scaled while the
characteristic structure of the paper texture is maintained. Multi-scale
rendering eliminates the aliasing and pixelization artifacts typical
when scaling image-based paper textures. If multi-scale rendering is not
used, conventional sampling and interpolation methods are used to render
transformed paper textures.

A GFX Texture for paper textures. For image-based paper textures, the
texture image should be both seamless and tileable, i.e., the image can
be repeated indefinitely in any two dimensional plane without noticeable
seams at the edges where two instances of the image meet.

+ Attributes of the current pen such as

+
+
+

+

Pen type, e.g., a pencil or marker

Pen color

A level of graininess, in the range [0,1], for pencil-type pens, where
more graininess emulates a softer pencil or a rougher surface

The maximum pen width, i.e., the pen width in pixels at maximum pen
pressure, and the pen width sensitivity in the range [0,1]. The pen
width sensitivity defines how the pen width varies with pen pressure.
If the pen width sensitivity is 0, the pen width is independent of pen
pressure; if the pen width sensitivity is 1, the pen width varies from 0
pixels at no pressure to the maximum pen width at maximum pen pressure.
The maximum pen opacity, i.e., the pen opacity at maximum pen pressure,
and the pen opacity sensitivity, where both attributes are in the range
[0,1]. The pen opacity sensitivity defines how the pen opacity varies
with pen pressure. If the pen opacity sensitivity is 0, the pen opacity
is independent of pen pressure; if the pen opacity sensitivity is 1, the
pen opacity varies from 0 at no pressure to the maximum pen opacity at
maximum pen pressure.

The pen's draw/erase mode. Any pen type can be used in either draw or
erase mode. A pen in draw mode adds color and opacity to the active
layer thereby building up opacity in the layer (up to a maximum opacity
of one), while a pen in erase mode subtracts opacity from the active
layer (down to a minimum opacity of zero).

A curve smoothing level used when fitting curves to input pen points

+ A global pen scale that can be used to modify the stroke widths of every
freehand stroke and stroked geometric shape in the canvas. This scale can be
used, for example, to change the visual impact of a drawing by thickening or
thinning its strokes.

+ Canvas metrics such as the number of bytes of GPU memory currently in use
by the canvas

+ An internal reference to the ICE instance to which this canvas belongs so
that subsequent calls to functions that operate on the canvas have access to

the ICE

instance attributes. Note that a canvas can belong to only one

ICE instance.
+ Rendering state

// + The canvas viewport and canvas transform

// + An internal flag indicating the current render status of the canvas (i.e.,
// 'up-to-date', 'needs incremental update', 'needs full render'). When the
// ICE render function gfxRenderCanvas is called, rendering is performed

// according to the current render status. The ICE Drawing Engine sets the

// flag to the appropriate render status when a ICE function that modifies

// the canvas is called (e.g., 'needs incremental update' is set when drawing
// on the canvas and 'needs full render' is set when changing the canvas

// viewport or the canvas transform). The ICE Drawing Engine resets the

// flag to 'up-to-date' when gfxRenderCanvas is successfully completed. If

// gfxRenderCanvas 1s called when the render status is 'up-to-date', the

// minimal amount of work possible is done to refresh the canvas viewport

// (e.g., the OpenGL back buffer may be refreshed from a stored copy of the
// rendered canvas viewport) .

// + An ordered history list of reversible operations performed on the canvas

// The data structure for canvas metrics. numStrokes and bBox do not include drawing
// operations that have been cleared or undone. The ICE Drawing Engine allocates

// blocks of system and GPU memory for efficient memory management. sysMemAlloc and
// GPUMemAlloc represent the total amount of system and GPU memory, respectively,

// that has been allocated for the canvas, while sysMemInUse and GPUMemInUse

// represent the amount of memory that is currently being used to represent the

// canvas. All memory sizes are reported in bytes.

typedef struct {
GFX I32 numStrokes; // # freehand strokes and stroked geometric shapes
GFX 164 sysMemInUse; // System memory in use by the canvas in bytes
GFX 164 sysMemAlloc; // Total system memory allocated for the canvas in bytes
GFX I64 GPUMemInUse; // GPU memory in use by the canvas in bytes
GFX I64 GPUMemAlloc; // Total GPU memory allocated for the canvas in bytes
GFX Rect DbBox; // Drawn-upon area of the canvas in viewport coordinates
} GFX CanvasMetrics;

// The data structure for canvas attributes and related constants, including bit
// flags (BFs) for setting and getting canvas attributes (for a description of bit
// flag use, see the GFX ICEInstAttrs data structure comment block). Note that

// the canvas metrics and the undo/redo types are used for observing the current
// state of a canvas; they cannot be set by the application.

/== s
/=
#define GFX_BF CANVAS NUM LAYERS 0x00000001
#define GFX_BF CANVAS ACTIVE LAYER 0x00000002
#define GFX_BF CANVAS PAPER TYPE 0x00000004
#define GFX_BF CANVAS PAPER COLOR 0x00000008
#define GFX BF CANVAS PAPER TEXTURE STRENGTH 0x00000010
#define GFX_BF CANVAS PAPER DO COLORIZE 0x00000020
#define GFX BF CANVAS PAPER DO MULTI SCALE 0x00000040
#define GFX BF CANVAS PAPER TEXTURE 0x00000080
#define GFX BF CANVAS PEN TYPE 0x00000100
#define GFX_BF CANVAS PEN COLOR 0x00000200
#define GFX _BF CANVAS PEN GRAININESS 0x00000400
#define GFX BF CANVAS PEN MAX WIDTH 0x00000800
#define GFX BF CANVAS PEN WIDTH SENS 0x00001000
#define GFX_BF CANVAS PEN MAX OPACITY 0x00002000
#define GFX BF CANVAS PEN OPACITY SENS 0x00004000
#define GFX_BF CANVAS DRAW ERASE MODE 0x00008000
#define GFX_BF CANVAS CURVE FIT LEVEL 0x00010000

#define GFX_BF CANVAS GLOBAL PEN_ SCALE 0x00020000

#define GFX_BF CANVAS METRICS

#define GFX_BF CANVAS UNDO TYPE
#define GFX_BF CANVAS REDO TYPE

#define GFX_PAPER TYPE SOLID COLOR

#define GFX_PAPER TYPE RGB IMAGE TEXTURE

#define GFX PAPER TYPE GRAY IMAGE TEXTURE

#define GFX PEN TYPE MARKER 0
#define GFX PEN TYPE PENCIL 1

#define GFX_PEN TYPE NIB

#define GFX_PEN DRAW MODE
#define GFX PEN ERASE MODE

#define GFX CFIT DEFAULT
#define GFX_CFIT_ SMOOTH
#define GFX_CFIT SMOOTHER
#define GFX _CFIT SMOOTHEST
#define GFX CFIT MOUSE INPUT

#define GFX REVERSIBLE OP_ NONE

#define GFX REVERSIBLE OP STROKE

#define GFX REVERSIBLE OP LINE

#define GFX_REVERSIBLE OP POLYLINE
#define GFX REVERSIBLE OP_POLYGON
#define GFX REVERSIBLE OP RECTANGLE
#define GFX REVERSIBLE OP ELLIPSE

#define GFX_REVERSIBLE OP IMAGE

#define GFX REVERSIBLE OP ADD LAYER
#define GFX REVERSIBLE OP DELETE LAYER

#define GFX REVERSIBLE OP CLEAR LAYER

#define GFX REVERSIBLE OP CLEAR ALL LAYERS 11

#define GFX REVERSIBLE OP MERGE LAYER
#define GFX REVERSIBLE OP XFORM LAYER

#define GFX REVERSIBLE OP_ CUT

#define GFX_REVERSIBLE OP PASTE
#define GFX_REVERSIBLE OP MOVE LAYER

typedef struct ({
//----Set/get bit flags
GFX I32 bitFlags;

0x00040000
0200080000
0x00100000

// Bitwise OR of bit flags for canvas attrs set/get

//====Canvas layersS———— === m = oo
GFX I32 numLayers; // Number of layers in the canvas; defaults to 0
GFX I32 idxActivelayer; // Index of active layer in canvas's ordered layer list

//--—--Canvas paper attributes------—————--"-"-"-"-"-""-"-""-"-""-"""—"-" "~~~
GFX I32 paperType; // Paper type: default GFX PAPER TYPE SOLID COLOR
GFX U8 paperColor[3]; // Paper RGB color; defaults to white (255,255,255)
GFX F32 paperTextureStrength; // For paper texture: range [0,1]; defaults to 1
GFX I32 paperDoColorize; // For paper texture: 1 if yes, 0 if no; default O
GFX I32 paperDoMultiScale; // For paper texture: 1 if yes, 0 if no; default 1
GFX Texture paperTexture; // For paper texture: default O-byte RGB JPEG image
/T -
//----Pen attributes--—-----------------—
GFX I32 penType; // Pen type; defaults to GFX PEN TYPE PENCIL

GFX U8 penColor[3]; // Pen RGB color; defaults to black (0,0,0)

GFX F32 penGraininess; // For pencil type: range [0,1]; defaults to 0.5
GFX F32 penMaxWidth; // Pen width at max pen pressure; defaults to 2 pixels

GFX F32 penWidthSens; // Width sensitivity to pressure: range [0,1]; default 1
GFX F32 penMaxOpacity; // Opacity at max pen pressure: range [0,1]; default 0.8
GFX F32 penOpacitySens; // Opacity sensitivity to pressure: range [0,1]; default 1
GFX I32 drawEraseMode; // Pen drawing mode; defaults to GFX PEN DRAW MODE

GFX I32 curveFitLevel; // For freehand strokes; defaults to GFX CFIT DEFAULT

GFX F32 globalPenScale; // Global pen width scale; defaults to 1.0

/s
//----Number of strokes, canvas bounding box, memory use--—--—--—-——-—-—————————————
GFX CanvasMetrics metrics; // Canvas metrics

/=
//----Reversible operation types for next undo/redo---—--------———————————————————
GFX I32 undoType; // GFX REVERSIBLE OP NONE, GFX REVERSIBLE OP STROKE
GFX_I32 redoType; // GFX_REVERSIBLE OP NONE, GFX REVERSIBLE OP STROKE
e S

// Create a canvas in the specified ICE instance using the specified canvas

// attributes canvasAttrs. Specific canvas attributes can be specified when the

// canvas 1is created by setting the corresponding bit flags in canvasAttrs (using

// the convention described in the GFX ICEInstAttrs data structure comment block).
// Default values (see above) are used for any attributes that are not identified by
// canvasAttrs->bitFlags. Alternatively, if canvasAttrs is NULL, default values are
// used for all attributes. This function returns an opaque pointer to the canvas

// ~upon success; a NULL pointer is returned if the request cannot be satisfied.

// Destroy (recursively) the specified canvas and all of its associated data
// structures (e.g., its layers, the drawing operations defined on each layer, etc.)

// Set the requested canvas attributes for the specified canvas. Note the following
// + The application can only set the number of layers indirectly by adding,

// deleting, and merging layers via gfxAddLayer, gfxDeletelayer, and

// gfxMergelayerDown, respectively

// + The canvas metrics and the undo/redo types are used for observing the current
// state of a canvas; they cannot be set by the application

=

// A canvas has an opaque paper background and an ordered list of transparent layers
// upon which to draw. Drawing directly on the paper is not supported; drawing is

// always performed on the active layer, which is set by the application. Layers can
// Dbe added and deleted from a canvas, cleared, reordered, and merged down onto the
// layer below. The visibility of a layer can be set to on or off and the opacity of

// a layer can be varied from zero (fully transparent) to one (fully opaque).

// When a canvas is rendered, each layer is first rendered independently by

// compositing its drawing operations in the order in which they were drawn. Next,
// each rendered layer, modulated by its opacity, i1s composited (in bottom-most to
// top-most order) onto the canvas paper using the conventional graphics over

// operator (see Porter and Duff, 1984); this is equivalent to blending layers using
// the 'Normal' blend mode in Adobe Photoshop.

//
// Each layer has a set of layer attributes (e.g., the name, opacity, visibility
// Boolean, and a texture map ID of the layer). The texture map ID is an OpenGL

// texture ID that can be used, for example, to create a thumbnail for previewing

// the layer. The OpenGL texture map identified by the texture map ID contains the
// most-recently rendered rendition of the layer (rendered via gfxRenderCanvas). To
// render a thumbnail of the layer using OpenGL, an application would enable texture
// mapping, bind the layer's texture map, and render a quadrilateral of the desired
// size. Note that the aspect ratio of the quadrilateral should match the aspect

// ratio of the canvas viewport that was in effect when gfxRenderCanvas was last

// called (see Rendering Canvases and Layers).

// The data structure for layer attributes and related constants, including bit
// flags (BFs) for setting and getting layer attributes (for a description of bit
// flag use, see the GFX ICEInstAttrs data structure comment block)

[mm e
#define GFX BF LAYER NAME 0x0001
#define GFX_BF LAYER OPACITY 0x0002
#define GFX_BF LAYER IS VISIBLE 0x0004
#define GFX BF LAYER TEXMAP ID 0x0008
/) m T oo
/=
typedef struct ({
//----Set/get bit flags———---=-="="="="="="="—"—"—"—"—"—"—"—~"—~—~—~—~—~(—~\—~—(——
GFX I32 bitFlags; // Bitwise OR of bit flags for set/get of layer attrs
e ittt bl bt
//--—--Layer attributes-—----—----"-""-"""""""""""—"—"—""—~"—~—~—~—~(—~—(—~(—(—(
GFX I8 namel[256]; // Defaults to "ICE Layer"
GFX F32 opacity; // Layer opacity: range [0,1]; defaults to 1
GFX I32 isVisible; // Visibility: 1 if visible (default); 0 if not visible
GFX U32 texMaplID; // OpenGL texture ID for the layer; 0 if not wvalid
/ m e e

// Add a new layer to the specified canvas using the specified layer attributes
// layerAttrs. Specific layer attributes can be specified when the layer is added
// by setting the corresponding bit flags in layerAttrs (using the convention

// described in the GFX ICEInstAttrs data structure comment block). Default

// values (see above) are used for any attributes that are not identified by

// layerAttrs->bitFlags. Alternatively, if layerAttrs is NULL, default values are
// used for all attributes.

// The new layer is added immediately above the canvas's active layer (or at the top
// of the canvas's ordered list of layers if there is no active layer) and the

// canvas's active layer is set to the new layer. Like all function calls in the

// ICE Drawing Engine, this function sets the error code in the ICE instance

//
//

//
//
//
//

to which this canvas belongs; if a layer cannot be added, the appropriate error
code will be set; the application can retrieve the error via gfxGetError.

Delete the canvas's active layer. The canvas's active layer is reset as follows:
if the deleted layer was the only layer in the canvas, the index of the canvas's
active layer is set to -1; if the canvas had more than one layer and the deleted
layer was the bottom layer, the canvas's active layer is set to the new bottom
layer; otherwise, the canvas's active layer is set to the layer that was
immediately below the deleted layer.

Set the requested layer attributes of the layer of the specified canvas indexed
by idxLayer

Get the requested layer attributes of the layer of the specified canvas indexed
by idxLayer

Move the active layer of the specified canvas from its current position in the
canvas's ordered list of layers to the destination position identified by the

index dstIdx. dstIdx must be a valid index for the layer list, i.e., it must be
between zero and N-1, where N is the number of layers in the layer list. Other
layers are shifted up or down in the layer list to accommodate the moved layer.

Merge the active layer of the specified canvas down onto the layer immediately
below it. This function has no effect if the active layer is immediately above
the paper of the specified canvas. The layer onto which the active layer is
merged becomes the active layer.

Drawing on a canvas modifies the currently active layer. Drawing operations,
which include drawing freehand strokes, lines, polylines, polygons, rectangles,
ellipses, and placing images, are performed with a sequence of three ICE
function calls to initialize, update, and finalize the drawing operation. The
initialize and finalize function calls are each performed once per drawing
operation and the update function call may be repeated as many times as desired
before the finalize function is invoked. This sequence mechanism allows the ICE
Drawing Engine to perform very fast interactive updates to the canvas. Typically,
an application would render the canvas after each update function call and
transfer the result to the display (e.g., using a bitblt), thereby providing
interactive drawing for artists. Note that only drawing update and render canvas
function calls (gfxUpdateDrawing and gfxRenderCanvas, respectively) will be
processed by the ICE Drawing Engine between the initialize and finalize drawing
function calls.

As an example, a typical application might implement freehand stroke drawing by
initializing a freehand stroke operation with the point corresponding to a mouse
down event, updating the freehand stroke operation with points collected from
mouse motion events, and finalizing the freehand stroke operation with the point
corresponding to a mouse up event. By rendering the canvas after handling each
motion event, the application would provide visual feedback of the stroke to the
user during drawing.

Freehand strokes, lines, polylines, and polygons are drawn using pen points. A
pen point's (x,y) coordinates are specified in canvas viewport coordinates. The
pressure component of a pen point is restricted to values between zero and one;
the effect of pen pressure on the rendered drawing operation depends on the pen

type.

Rectangles, ellipses, and images are defined by a GFX RotatedRect, which is
specified by its center point, width, height, and angle of rotation about its
center point. The center point, width, and height are specified in viewport
coordinates and the angle is specified in degrees.

Note that update function calls are optional, especially for drawing operations
such as line segments which are defined solely by their initial and final end
points, or for rectangles, ellipses, and images which are defined solely by their
final destination rectangle. For example, to draw a set of prescribed lines (e.g.,
guide lines or grid lines for page layout), the application could draw these lines
directly (i.e., non-interactively) with a sequence of initialize/finalize function
calls to specify the first and last endpoint of each line.

Note also that the initialize, update, and finalize function calls do not need to
correspond directly to a conventional mouse down / mouse drag / mouse up drawing
sequence. For example, to provide more control over rectangle placement, an
application might use the following steps: 1) initialize the size and placement
of a rectangle with initialize and update function calls corresponding to a mouse
down / mouse drag / mouse up drawing sequence; 2) provide an interface (e.g., a
set of handles such as those used in Adobe Photoshop) to enable the modification
of the rectangle's position, scale, and rotation via additional update function
calls; and 3) invoke the finalize function call when an 'accept' button in the
interface is activated by the user.

The ICE Drawing Engine supports infinite zoom which enables applications to
create drawings at 'multiple levels of detail', e.g., a drawing of a map of a
country that can be zoomed in to see city streets which in turn can be zoomed in
to see the molecular structure of the pavement of a single street. Although the
ICE Drawing Engine supports sub-pixel accuracy during drawing, the internal
representation of pen point coordinates is limited to an accuracy of 1/32nd of a
pixel to facilitate small file sizes. Consequently, applications should make use
of canvas transforms (see “Transforming Canvases and Layers”) to achieve multiple
level of detail drawings. For the map example given above, an application might
draw details at the country scale when the canvas transform is set to the
identity transform, details at the city street scale when the transform is scaled
so that the city streets fill the canvas viewport, and details at the molecular

// scale when the transform is scaled so that the molecular structure of the pavement
// of a single street fills the canvas viewport.

// The data structure and related constants for defining a drawing operation.
// Different attributes are used by different drawing operation types as follows:

// Pen points and the number of pen points are used to draw freehand strokes, lines,
// polylines, and polygons. They are ignored by other drawing operation types.

// dstRect is used to specify the rotated bounding box of drawn rectangles, ellipses,
// and images; for an ellipse, the width and height specify the lengths of the axes
// of the ellipse. dstRect is ignored by other drawing operation types.

// 1image is set when the drawing sequence for a placed image is initialized. It is
// d1gnored by all other drawing operation types.

#define GFX DRAW TYPE STROKE 0
#define GFX_DRAW TYPE LINE 1
#define GFX _DRAW TYPE POLYLINE 2
#define GFX DRAW TYPE POLYGON 3
#define GFX DRAW TYPE RECTANGLE 4
#define GFX DRAW TYPE ELLIPSE 5
#define GFX_DRAW TYPE IMAGE 6

/=
=
typedef struct ({
GFX_I32 type; // GFX_DRAW TYPE STROKE, GFX DRAW TYPE LINE,
GFX I32 numPoints; // For updating strokes, lines, polylines, polygons
GFX Point *pts; // Pen points for strokes, lines, polylines, polygons
GFX RotatedRect dstRect; // Destination rect for rectangles, ellipses, images
GFX_ Image image; // For initializing an image drawing operation

} GFX DrawingAttrs;

// Initialize a drawing operation of the specified drawing type in the currently

// active layer of the specified canvas with the given drawing attributes. This

// function initializes a drawing sequence which must be terminated by a call to

// gfxFinalizeDrawing. The use and interpretation of the drawing attributes for each
// drawing type are defined as follows:

// + GFX DRAW TYPE STROKE: the first point in a new stroke is set to pts[0]
GFX DRAW TYPE LINE: the start and end points of a new line segment are both set
// to pts[0]

~
~
+

// + GFX DRAW TYPE POLYLINE: the first vertex of a new polyline is set to pts[0]

// + GFX DRAW TYPE POLYGON: the first vertex of a new polygon is set to pts[0]

// + GFX DRAW TYPE RECTANGLE: a new rotated rectangle is defined by dstRect

// + GFX DRAW TYPE ELLIPSE: a new ellipse is defined by dstRect. Width and height

// define the axes of the ellipse, (cx,cy) 1is its center point, and the ellipse

// is rotated about (cx,cy) by angle, which is specified in degrees.

// + GFX DRAW TYPE IMAGE: a new image specified by image is copied and placed in

// dstRect. Currently, only GFX IMAGE RGB JPEG, GFX IMAGE RGB PNG, and

// GFX IMAGE RGBA PNG images are supported.

/=

void gfxInitDrawing (void *canvas, GFX DrawingAttrs *drawingAttrs);

Update the currently active drawing operation in the specified canvas with the
given drawing attributes. The drawing operation must have been initialized via
gfxInitDrawing. gfxUpdateDrawing can be called repeatedly during a drawing
sequence until gfxFinalizeDrawing is invoked. The interpretation of the drawing
attributes for each drawing type is defined as follows:

+ GFX DRAW TYPE STROKE: numPts pen points beginning at pts are appended to the
end of the current stroke

+ GFX DRAW TYPE LINE: the end point of the current line segment is reset to pts[0]

+ GFX DRAW TYPE POLYLINE: numPts vertices beginning at pts are appended to the end
of the current polyline

+ GFX DRAW TYPE POLYGON: numPts vertices beginning at pts are appended to the end
of the current polygon

+ GFX DRAW TYPE RECTANGLE: the current rectangle is redefined to dstRect

+ GFX DRAW TYPE ELLIPSE: the current ellipse is redefined by dstRect

+ GFX DRAW TYPE IMAGE: the placement of the current image is redefined to dstRect

Finalize the currently active drawing operation in the specified canvas with the
given drawing attributes. The drawing operation must have been initialized via
gfxInitDrawing. This call is required to terminate a drawing sequence. The
interpretation of the drawing attributes for each drawing type is defined as
follows:

+ GFX DRAW TYPE STROKE: if numPoints is one, pts[0] is appended to the end of the
current stroke and the stroke is finalized. If numPoints is zero, the current
stroke is finalized at the previous point.

+ GFX DRAW TYPE LINE: if numPoints is one, the end point of the current line
segment is finalized at pts[0]. If numPoints is zero, the current line segment
is finalized at the previous point.

+ GFX DRAW TYPE POLYLINE: if numPoints is one, pts[0] is appended to the end of
the current polyline and the current polyline is finalized. If numPoints is
zero, the current polyline is finalized at the previous point.

+ GFX DRAW TYPE POLYGON: if numPoints is one, pts[0] is appended to the end of the
current polygon and the polygon is closed. If numPoints is zero, the polygon is
closed from the previous point.

+ GFX DRAW TYPE RECTANGLE: the current rectangle is finalized to dstRect

+ GFX DRAW TYPE ELLIPSE: the current ellipse is finalized by dstRect

+ GFX DRAW TYPE IMAGE: the placement of the current image is finalized to dstRect

The ICE Drawing Engine supports both on-screen canvas rendering and off-screen
canvas, layer, and canvas paper rendering. On-screen rendering renders a canvas
into its canvas viewport in the OpenGL back buffer. The application is
responsible for transferring the canvas viewport to the OpenGL front buffer for
display. The transfer can be performed using a bitblt or by swapping the OpenGL
back and front buffers. Off-screen rendering renders a canvas, layer, oOr canvas
paper into a GFX Image which is then provided to the application. The application
is responsible for freeing the GFX Image when it is no longer needed.

A canvas has both infinite spatial extent and infinite zoom. The specific
rectangular region of the infinite canvas to be rendered is determined by setting

a canvas viewport and a canvas transform.

For on-screen rendering, the canvas viewport defines the width and height of the

// rendered image in integer pixel coordinates and the offset of the canvas viewport
// from the bottom-left corner of the window in which the canvas viewport is

// displayed. The canvas transform positions, scales, and rotates the canvas

// relative to the canvas viewport and is described below in "Transforming Canvases
// and Layers".

// The application is responsible for making ICE rendering calls. Rendering calls

// should be made to display changes in the canvas (e.g., during a drawing sequence,
// after undo or redo operations, when the canvas paper is changed, and during a

// transform sequence). A canvas keeps track of what needs to be rendered using its
// internal render status flag (see “ICE Canvases”). ICE functions that modify

// the canvas set the render status flag to 'needs incremental update' or 'needs

// full render' as appropriate. Rendering a canvas via gfxRenderCanvas resets the

// render status flag to 'up-to-date'.

// For off-screen rendering, a rectangular region of a canvas, layer, or canvas

// paper, specified in canvas viewport coordinates, is rendered to an image. The
// size of the off-screen image (i.e., its dimensions in image pixels) is set

// independently by specifying the width of the off-screen image in pixels (the

// 1image height is computed by the ICE Drawing Engine to preserve the aspect

// ratio of the rectangular region); this permits any rectangular region of a

// canvas, layer, or canvas paper to be rendered off-screen at any resolution.

// The data structure for a progress bar mechanism. The progress bar mechanism can

// be used by the application to monitor the progress of certain non-real-time

// ICE functions, such as off-screen rendering of large images, which may require

// several seconds to perform. To use the progress bar mechanism, the application

// provides the monitored ICE function with a pointer to a GFX ProgressBar data

// structure that contains pointers to application functions (i.e., InitProgressBarFP
// and FinalizeProgressBarFP) to be invoked at the beginning and end of the monitored
// ICE function as well as an update function (i.e., UpdateProgressBarFP) to be

// invoked as the monitored ICE function progresses. The monitored ICE function

// will periodically call the application's update function with an estimate of what
// percent of the task has been completed. The application's update function returns
// an integer value to the monitored ICE function; if the value returned to the

// monitored ICE function is non-zero, the monitored ICE function will abort

// its operation and return control to the application.

T
typedef struct { // BApp function pointers (FPs)
void (*InitProgressBarFP) (void); // Initialize progress bar FP
GFX I32 (*UpdateProgressBarFP) (GFX F32 pctDone); // Update progress bar FP
void (*FinalizeProgressBarFP) (void); // Finalize progress bar FP

} GFX ProgressBar;

// Attributes required for rendering a source rectangle of a canvas, layer, paper
// background or a canvas without the paper background (i.e., with a transparent
// background) to an image

/= mm T
[m T o
#define GFX IMAGE SRC TYPE CANVAS 0 // Render canvas to image
#define GFX IMAGE SRC TYPE LAYER 1 // Render layer to image
#define GFX IMAGE SRC TYPE PAPER 2 // Render paper background to image
#define GFX IMAGE SRC TYPE CANVAS NO PAPER 3 // Render canvas w/o paper to image
/= oo
ity
typedef struct {

GFX I32 srcType; // GFX_IMAGE SRC_TYPE CANVAS,

GFx:I32 idxLayer; // Layer index for rendering a layer to an image

GFX Rect srcRect; // Source rectangle in viewport coordinates

GFX I32 imageWidth; // Width in pixels of image to be rendered

GFX ProgressBar *progressBar; // For monitoring render progress; not used if NULL
} GFX RenderToImageAttrs;

// Set the canvas viewport rectangle of the specified canvas to canvasViewport.

// canvasViewport specifies both the offset (x,y) of the bottom-left corner of the
// canvas viewport from the bottom-left corner of the window in which the canvas
// viewport is displayed and the size (w,h) of the canvas viewport in pixels. Note
// that (x,y) and (w,h) must be specified as integer pixel values.

// Get the canvas viewport rectangle of the specified canvas. canvasViewport

// specifies both the offset (x,y) of the bottom-left corner of the canvas viewport
// from the bottom-left corner of the window in which the canvas viewport is

// displayed and the size (w,h) of the canvas viewport in pixels.

// Render the paper and visible layers of the specified canvas 'on-screen' to the

// rectangular region of the OpenGL back buffer defined by the canvas viewport of

// the specified canvas. The region of the canvas that is rendered is defined by the
// canvas transform.

e
// Render the rectangular region specified by source rectangle renToImgAttrs->srcRect
// ‘'off-screen' into a GFX Image. renToImgAttrs->srcRect is specified in viewport

// coordinates. renToImgAttrs->srcType indicates whether the visible canvas, the

// layer indexed by renToImgAttrs->idxLayer, or the canvas paper background is

// rendered to the image. The width in pixels (e.g., 1024 pixels) of the off-screen
// 1image is specified by renToImgAttrs->imageWidth; the image height is computed by
// the ICE Drawing Engine to preserve the aspect ratio of renToImgAttrs->srcRect.

// Because rendering a large image may require several seconds, applications can make
// use of a progress bar mechanism to monitor the progress of gfxRenderToImage (see
// the description of the GFX ProgressBar data structure for details). The progress
// bar mechanism is not used if renToImgAttrs->progressBar is NULL.

// The rendered image is a GFX IMAGE RAW RGB raw image when rendering a canvas or
// a canvas paper background to an image and a GFX IMAGE RAW RGBA raw image when
// rendering a layer or the canvas without the paper to an image. The RGBA color
// space is required for rendering without the paper to preserve opacity values,
// e.g., for compatibility with pixel-based applications that support layers. This
// function returns a pointer to the GFX Image upon success; a NULL pointer is

// returned if the request cannot be satisfied (e.g., due to insufficient memory).
// Note that the application is responsible for destroying the GFX Image and its
// byteStream when the GFX Image is no longer needed using the memory free function
// freeFP of the canvas's ICE instance (see gfxGetICEInstAttrs for retrieving

// freeFP). For example, if the GFX Image pointer returned by gfxRenderToImage is
// stored in a variable named 'image', the calls freeFP (image->byteStream) and

// freeFP(image) will free the GFX Image.

GFX Image *gfxRenderTolmage (void *canvas, GFX RenderToImageAttrs *renTolImgAttrs);

A canvas has both infinite spatial extent and infinite zoom (subject to floating
point representation limits for canvas transformations). The specific region of
the infinite canvas that is rendered to the canvas viewport is determined by the
canvas transform, which specifies the position, scale, and rotation of the canvas
relative to the canvas viewport. When the canvas transform is set to the
identity, the canvas origin maps to the bottom-left corner of the canvas
viewport, its x- and y-axes map to the bottom and left edges of the canvas
viewport, respectively, and one unit in the canvas corresponds to one pixel in
the canvas viewport.

Transformations can be applied to both canvases and the active layer of a canvas.
Changing the canvas transform can modify the position, scale, and rotation of the
canvas relative to the canvas viewport. Changing a layer transform can modify the
position, scale, and rotation of the layer relative to its canvas.

Modifying a canvas or active layer transform requires a sequence of ICE

function calls to initialize, update, and finalize the transformation. The
initialize and finalize function calls are each performed once per transformation
and the update function call may be repeated as many times as desired (typically
to support interactive transformations) before the finalize function is invoked.
Alternatively, the update function call may be omitted so that the finalize
function call transforms the canvas or layer directly to its final placement.

After a transformation sequence is initialized, the ICE Drawing Engine will
only process corresponding transformation update calls (i.e., gfxUpdateCanvasXform
or gfxUpdateLayerXform) and render canvas function calls (i.e., gfxRenderCanvas)
until the transformation sequence is finalized.

The data structure and related constants for defining a transformation. The

scale, translate, and rotation values in the GFX XformAttrs data structure are
all specified as total amounts since the transform sequence was initialized via
gfxInitCanvasXform or gfxInitLayerXform. For type GFX XFORM TYPE SCALE, scale is
the uniform scale applied to the canvas or layer. For type GFX XFORM TYPE XYSCALE,
scale is the x-component of the xy-scale applied to the canvas or layer and yScale
is the y-component of the xy-scale applied to the canvas or layer.

#define GFX XFORM TYPE SCALE 0
#define GFX_XFORM TYPE TRANSLATE 1
#define GFX_XFORM TYPE ROTATE 2
#define GFX XFORM TYPE XYSCALE 3

typedef struct {

GFX_I32 type; // GFX XFORM TYPE SCALE, GFX XFORM TYPE TRANSLATE,
GFX F32 originX; // x-coord of xform origin in canvas viewport coordinates
GFX F32 originY; // y-coord of xform origin in canvas viewport coordinates

GFX F32 scale; // Total scale (or x-component of xy-scale) about xform origin
GFX F32 yScale; // Total y-component of xy-scale about xform origin

GFX F32 dx; // Total x-translation in viewport coords from xform origin
GFX F32 dy; // Total y-translation in viewport coords from xform origin
GFX _F32 angle; // Total rotation in degrees about xform origin

GFX XformAttrs;

// Initialize a transform sequence for the specified canvas. xFormAttrs must specify
// the type of transformation (i.e., GFX XFORM TYPE SCALE, GEFX XFORM TYPE TRANSLATE,
// GEFX XFORM TYPE ROTATE, or GFX XFORM TYPE XYSCALE) and the transformation origin
// (originX,originY). Other fields of xFormAttrs are ignored by gfxInitCanvasXform.
// This function initializes a canvas transform sequence which must be terminated by
// a call to gfxFinalizeCanvasXform.

// Update the canvas transform of the specified canvas using the given xFormAttrs.
// The transformation type and the transformation origin are assumed to be the same
// as those set when the transformation sequence was initialized via

// gfxInitCanvasXform. xFormAttrs must contain valid data in the field(s)

// corresponding to the transformation type, i.e., a valid scale for

// GFX XFORM TYPE SCALE, a valid dx and dy for GFX XFORM TYPE TRANSLATE, a valid

// angle for GFX XFORM TYPE ROTATE, and a valid x-scale and y-scale for

// GFX XFORM TYPE XYSCALE. Other fields in xFormAttrs are ignored by

// gfxUpdateCanvasXform. gfxUpdateCanvasXform can be called repeatedly during a

// canvas transform sequence until gfxFinalizeCanvasXform is invoked.

// Finalize the canvas transform of the specified canvas using the given xFormAttrs.
// The transformation type and the transformation origin are assumed to be the same
// as those set when the transformation sequence was initialized via

// gfxInitCanvasXform. xFormAttrs must contain valid data in the field(s)

// corresponding to the transformation type, i.e., a valid scale for

// GFX_XFORM TYPE SCALE, a valid dx and dy for GFX XFORM TYPE TRANSLATE, a valid

// angle for GFX XFORM TYPE ROTATE, and a valid x-scale and y-scale for

// GFX XFORM TYPE XYSCALE. Other fields in xFormAttrs are ignored by

// gfxFinalizeCanvasXform. This call is required to terminate a canvas transform

// sequence.

// Reset the layer transform of the active layer of the specified canvas to the
// identity transform

void gfxResetlLayerXform (void *canvas) ;

// Initialize a transform sequence for the active layer of the specified canvas. See
// gfxInitCanvasXform for a description of xFormAttrs. This function initializes a
// layer transform sequence which must be terminated by a call to

// gfxFinalizeLayerXform.

void gfxInitLayerXform (void *canvas, GFX XformAttrs *xFormAttrs);

//
//

//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//

//
//
//
//

Update the layer transform of the active layer of the specified canvas using the
given xFormAttrs. See gfxUpdateCanvasXform for a description of xFormAttrs.
gfxUpdatelLayerXform can be called repeatedly during a layer transform sequence
until gfxFinalizelayerXform is invoked.

Finalize the layer transform of the active layer of the specified canvas using
the given xFormAttrs. See gfxFinalizeCanvasXform for a description of xFormAttrs.
This call is required to terminate a layer transform sequence.

The ICE Drawing Engine supports the selection of a rectangular region of the
active layer of a specified canvas to enable cut, copy, and paste operations

Copy a rectangular region from the active layer of the specified canvas into the
selection buffer of the ICE instance associated with the canvas. The

rectangular region is specified by selectionRect, which is specified in canvas
viewport coordinates. If the rectangular region of the active layer is empty, the
contents of the selection buffer are not altered and a zero value is returned.
Otherwise, a non-zero value is returned.

Cut a rectangular region from the active layer of the specified canvas into the
selection buffer of the ICE instance associated with the canvas. Note that the
cut operation clears the rectangular region of the active layer. The rectangular
region is specified by selectionRect, which is specified in canvas viewport
coordinates. If the rectangular region of the active layer is empty, the contents
of the selection buffer are not altered and a zero value 1s returned. Otherwise,
a non-zero value is returned.

Paste the contents of the selection buffer of the ICE instance associated with
the specified canvas into the active layer of the specified canvas at the given
point (x,y), where (x,y) specifies the bottom-left corner of the pasted selection
in canvas viewport coordinates

Initialize a selection transform sequence. This function cuts the source rectangle
srcRec from the active layer and pastes it back in place in the same layer. srcRec
is specified in canvas viewport coordinates. This function initializes a selection
transform sequence which must be terminated by a call to gfxFinalizeSelectionXform.

// If the rectangular region of the active layer is empty or the initialization fails,
// a zero value 1s returned. Otherwise, a non-zero value 1is returned.

// Update the selection transform sequence by re-positioning the pasted rectangle
// 1nto the destination rectangle dstRect. gfxUpdateSelectionXform can be called

// repeatedly during a selection transform sequence until gfxFinalizeSelectionXform
// 1s invoked.

// Finalize the selection transform sequence by re-positioning the pasted rectangle
// into the destination rectangle dstRect. This call is required to terminate a
// selection transform sequence.

// The ICE Drawing Engine supports infinite undo and redo of reversible

// operations performed on a canvas. Reversible operations include 1) drawing

// operations (adding freehand strokes, stroked geometric shapes, and images to the
// canvas), 2) cutting and pasting selections, 3) adding, deleting, clearing,

// moving, and merging layers, and 4) applying transformations to layers. The ICE
// Drawing Engine does not directly support undo and redo for other operations such
// as changing drawing or layer attributes, transforming canvases, or creating and
// destroying canvases; it is the application's responsibility to provide the

// necessary support for undo and redo for such operations if so desired.

// Undo and redo for a canvas are supported by maintaining a history list of the

// reversible operations that have been performed on the canvas. An index of the

// 'last active operation' in the history list is maintained, where the 'last active
// operation' is defined as the current last reversible operation used to render the
// canvas. An undo decrements the index (down to zero) and a redo increments the

// index (up to the end of the history list). When a new reversible operation is

// performed, the new operation is placed at the position following the last active
// operation, the index of the last active operation is incremented, and the history
// list is truncated after the new operation (thereby making operations undone prior
// to the new operation no longer redo-able).

// The history list of a saved canvas 1s truncated after the last active operation.
// Consequently, operations undone prior to the save cannot be redone when the saved
// canvas 1is reloaded.

// Undo the last active reversible operation in the history list of the specified
// canvas. This function is ignored if there are no active reversible operations in
// the history list (i.e., the index of the last active operation is zero).

// Redo the reversible operation following the last active reversible operation in
// the history list of the specified canvas. This function is ignored if the last
// active reversible operation is the last reversible operation in the history list.

// Methods are provided so that an entire canvas or a specified rectangular region
// of a canvas can be saved to and reloaded from a file. The ICE Drawing Engine

// supports both lossless and lossy encoding to compress a canvas when the canvas
// or a region of the canvas is saved.

// Save the specified canvas. format determines how the canvas is compressed

// (e.g., GFX ENCODE LOSSLESS V0l or GFX ENCODE LOSSY VO0l). This function returns
// a pointer to a byte stream representing the specified canvas, where the byte

// stream consists of a block of memory beginning with a 32 bit unsigned length

// element L followed by L bytes; a NULL pointer is returned if the request cannot
// be satisfied. The application is responsible for freeing the byte stream when it
// is no longer needed using the memory free function of the ICE instance

// associated with the specified canvas (available using gfxGetICEInstAttrs).

A e
#define GFX ENCODE LOSSLESS V01 0
#define GFX_ENCODE_LOSSY V01 1
/== e s
/=

// Save a version of the specified canvas in which the content of each layer of the
// canvas 1is cropped by the specified rectangular region, with the rectangular

// region defined in canvas viewport coordinates. The content of each layer is

// repositioned to place the bottom left corner of the rectangular region at the
// canvas origin. A cropped canvas behaves like a regular canvas and can be loaded
// via gfxLoadCanvas. Note, however, that operations applied to each layer of a

// cropped canvas before saving via gfxSaveCanvasRegion can only be undone or

// redone as a group; they cannot be individually undone or redone. format

// determines how the cropped canvas is compressed (e.g., GFX ENCODE LOSSLESS V01
// or GFX ENCODE LOSSY VO01l). This function returns a pointer to a byte stream

// representing the cropped canvas, where the byte stream consists of a block of
// memory beginning with a 32 bit unsigned length element L followed by L bytes; a
// NULL pointer is returned if the request cannot be satisfied. The application is
// responsible for freeing the byte stream when it is no longer needed using the

// memory free function of the ICE instance associated with the specified canvas
// (available using gfxGetICEInstAttrs).

// Load a canvas into the specified ICE instance. byteStream is a pointer to a

// block of memory beginning with a 32 bit unsigned length element L followed by L
// bytes representing a compressed canvas that was previously saved via

// gfxSaveCanvas. Upon a successful load, a canvas is created and a pointer to the
// created canvas is returned; a NULL pointer is returned if the request cannot be
// satisfied.

#ifdef cplusplus

}
#endif

