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Abstract. While the kind of theoretical computer science being stud-
ied in academe is still highly relevant to systems-oriented research, it
is less relevant to applications-oriented research. In applied computing,
theoretical elements are used only when strictly relevant to the practical
problem at hand. Theory is often combined judiciously with empiricism.
And increasingly, theory is most useful when cross-pollinated with ideas
and methods from other fields. We will illustrate these points by de-
scribing several recent projects at Mitsubishi Electric Research Labs that
have heavy mathematical and algorithmic underpinnings. These projects
include new algorithms for: traffic analysis; geometric layout; belief prop-
agation in graphical models; dimensionality reduction; and shape repre-
sentation. Practical applications of this work include elevator dispatch,
stock cutting, error-correcting codes, data mining, and digital typogra-
phy. In all cases theoretical concepts and results are used effectively to
solve practical problems of commercial import.

1 Introduction

Many of the classical topics of theoretical computer science (e.g., algebra, fi-
nite automata, geometry, graph algorithms, logic, numerical methods, queuing
theory, string processing) are still studied to good effect in the industrial labs
of systems-oriented companies like IBM and Microsoft. However, as ubiquitous
computing becomes a reality, many companies (e.g., Mitsubishi Electric, Philips,
Siemens, and Sony) are focusing on applied computing. Computer-science the-
ory has still to establish itself in applied computing. We argue that theory has
a useful role in this context, but only when the following precepts are borne in
mind:

— Theory is a tool to understand and solve practical problems. In other words,
the nail should take precedence over the hammer: in applied computing the
problem is paramount and the means of solution is secondary. This mindset
leads to better, more eclectic problem selection and ultimately to more-
relevant research.

— Theory and empiricism complement each other. Many real-world problems
involve incomplete or uncertain data; many are NP-hard. Completeness, op-
timality, and asymptotic complexity are theoretical concepts that are rarely



useful on their own for such problems. However, in combination with exper-
imentation and statistical analysis—the tools of empirical analysis—these
theoretical notions can be very useful.

— Theoretical computer science can be informed by insights from other fields.
Cognitive science, economics, electrical engineering, statistics, theoretical
physics: concepts from these fields and others have proven useful for practical
problems when used in tandem with computer-science theory.

We illustrate these points by describing several recent projects at Mitsubishi
Electric Research Labs (www.merl.com) that have strong mathematical and al-
gorithmic underpinnings. These projects include new algorithms for: traffic anal-
ysis; geometric layout; belief propagation in graphical models; dimensionality
reduction; and shape representation. Practical applications of this work include
vehicular-traffic prediction, elevator dispatch, stock cutting, error-correcting codes,
image processing, data mining, and digital typography. In all cases theoretical
concepts and results are being used in accord with the precepts above to solve
practical problems of commercial import.

2 Traffic Analysis

Traffic of goods, vehicles, and passengers is a very complex phenomenon char-
acterized by significant stochasticity, non-stationarity, incomplete observability,
and huge problem sizes. Two transportation problems of large economic signif-
icance are optimal routing of vehicular traffic from origin to destination, and
optimal elevator service for passengers in large buildings. Recent progress on
both of these problems has resulted from a synergistic combination of theoreti-
cal and empirical concepts and methods.

Early successes in the field of vehicle routing were the result of important
theoretical insights, most notably the formulation of the principle of optimality
by the mathematician Richard Bellman, and the subsequent widespread use of
dynamic programming [3]. In particular, efficient algorithms for finding shortest
paths in static graphs have been available for a long time and now run on the
relatively weak computers found in car-navigation systems. Current models offer
spectacular performance, planning routes between two points in a whole country
in less than one second, and navigation-system vendors are looking for novel and
more advanced applications [24].

One such application is dynamic route guidance, or car navigation in dy-
namic stochastic networks. Nowadays, heavy congestion plagues the roads of
most cities in the developed industrial world, and travel times can vary signifi-
cantly depending on the time of day, week, year, etc. Finding optimal routes and
optimal departure times under such conditions opens a number of novel problems
such as sensing the state of the transportation network, predicting travel time
on short-term and long-term horizons, and finding the shortest-routing policies
in time-varying stochastic networks.



Predicting travel times from past observations is decidedly on the practical
side of scientific research, and is currently an active area of investigation in in-
dustry. Recent results include a fast and efficient linear method for travel-time
prediction with surprisingly good accuracy [14]. However, the very foundations
of the traffic-prediction enterprise depend on answering some very theoretical
questions that concern the limits of predictability in congested transportation
networks. Nagel and Rasmussen have put forward the hypothesis that a trans-
portation network would exhibit chaotic behavior when its load is pushed to
its capacity, and hence its long-term prediction would be impossible [12]. An
alternative and simpler hypothesis explains the high variance of travel times in
heavily congested regimes from the point of view of queuing theory, without
adverse implications to expected predictability. While finding the correct expla-
nation is ultimately a highly theoretical question, its answer is likely to affect
significantly all fielded systems.

Planning routes with dynamic stochastic travel times and scheduling eleva-
tors under dynamic stochastic passenger flows are two related problems that are
also accompanied by partial observability. Modern frameworks such as decision-
theoretic planning, considered theoretical and abstract only until quite recently,
are slowly starting to bear fruit and find their way into practical applications.
For example, Figure 1 shows a seven-floor building with four hall calls and one
car call assigned to an elevator car. The uncertainty in passenger destinations
can lead to an exponential number of possible car trajectories, illustrated here
by a partial tree. However, dynamic programming can be employed to marginal-
ize out this uncertainty in linear time [13]. Although explicit decision-theoretic
methods have provable performance, they have yet to be embraced by industry:
all current commercial elevator-scheduling systems use heuristic AT methods. To
be accepted by engineers, new elevator-scheduling algorithms must prove them-
selves empirically, through thorough simulation and field tests.

3 Human-Guided Search

The Human-Guided Search (HuGS) project is an ongoing investigation into
designing interactive human-in-the-loop optimization systems. This work illus-
trates the value of combining theory with empiricism, and of combining the-
ory with techniques from other fields, in this case human-computer interaction
(HCI). Interactive optimization produces more usable solutions than automatic
optimization because users can steer an interactive algorithm based on their
knowledge of real-world constraints. People are better able to trust, justify, and
modify solutions when they help construct those solutions. Additionally, inter-
active optimization leverages people’s skills in areas in which people currently
outperform computers, such as visual perception, strategic thinking, and the
ability to learn.
A major component in HuGS research is designing algorithms that are amenable

to human guidance. We have developed a human-guidable version of tabu search
for jobshop scheduling, edge-crossing minimization, the selective traveling sales-
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Fig. 1. An elevator car (one of several) in a seven-floor building can have an exponen-
tially large number of possible trajectories when serving all calls assigned to it, due to
the uncertainty in passengers’ destinations. (Each node in the tree denotes the stop-
ping floor, direction, and number of passengers inside the car.) However, the resulting
probabilistic tree has sufficient structure that allows these trajectories to be folded into
an efficient Markov model that can be evaluated in linear time.
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man problem, and simplified protein folding [8, 11]. More recently, we have built a
HuGS application for a 2D rectangular strip packing, which has many industrial
applications, such as glass and steel cutting [9].

Our interactive packing application consists of several components. One com-
ponent is an interface, shown in Figure 2, that is common to many of our appli-
cations. The interface allows the user to manually modify solutions, backtrack
to previous solutions, and invoke, monitor, and halt a variety of optimization
algorithms on the whole problem or a subset of the problem.

We provide two packing algorithms to the user. The first is a branch-and-
bound algorithm for producing perfect packings, i.e., packings in which there
is no unused space [10]. One can think of this special case as a jigsaw puzzle
with rectangular pieces. We developed several powerful bounding methods that
enable our algorithm to produce exceptionally good results on artificially con-
structed benchmarks in the literature that were designed to have solutions that
are perfect packings. The real value of our algorithm, however, is as a subroutine
that the user can invoke on a portion of the target packing area. Our algorithm
fills as much of the user-defined region as it can with the user-selected rect-
angles without leaving any unused space between rectangles. Even though this
algorithm cannot solve realistic problems by itself, it is a very useful tool or
subroutine for realistic problems.

The second algorithm we provide is an extension of a priority-based greedy
heuristic that was shown to be a 3-approximation [2]. We produced an anytime
algorithm that stochastically searches for solutions near the single solution pro-
duced by these heuristic. We often find substantially better solutions after only
a small number of iterations. The results produced by this algorithm are better
than previously published results on these benchmarks.

However, the most distinctive aspect of our system is the way in which
it leverages our algorithmic novelties by incorporating the innate geometric-
reasoning abilities of humans into the process. We have found that people can
identify particularly well-packed subregions of solutions, and focus our algo-
rithms on improving the other parts. Furthermore, people can readily envision
multi-step repairs to a packing problem to reduce unused space. Our experiments
on large benchmarks show that interactive use of our system can produce solu-
tions 1% closer to optimal in about 15 minutes than our algorithms can produce
automatically in 2 hours [9]. For typical industrial applications, this represents
a commercially significant advantage.

4 Belief Propagation

The “belief propagation” (BP) algorithm is used to solve “inference” problems,
at least approximately. Inference problems are important in many different sci-
entific and industrial fields. Essentially any time you receive a noisy signal and
need to infer what is really out there, you are dealing with an inference problem.
Some fields that are dominated by the issue of inference are computer vision,
speech recognition, and digital communications. In recent work at MERL, re-
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Fig. 2. Interactive system for an industrial cutting-stock problem, 2D Rectangular
Strip Packing. In the first image, the user has selected a region to which an optimization
algorithm can be applied and has “frozen” most of the already-packed rectangles (those
shown in red) in their place. The second image shows a blowup of the selected portion
of the packing after the optimization algorithm has run for a few seconds. By allowing
the human user to focus the search on a small region and subset of the rectangles,
a better packing for the problematic region is found quickly, thereby improving the
overall solution. The combination of user interaction and automatic placement does
better than either approach on its own.



sults from statistical mechanics have been combined with results from theoretical
computer science to shed new light on the BP algorithm.

It is therefore perhaps not so surprising that a good algorithm to solve such
problems has been repeatedly re-discovered in different scientific communities.
In fact, one can show that such apparently different methods as the “forward-
backward algorithm,” the “Viterbi algorithm,” Gallager’s “probabilistic decod-
ing” algorithm for low-density parity check codes, the “turbo-decoding” algo-
rithm, the Kalman filter, Pearl’s belief propagation algorithm for Bayesian net-
works, and the “transfer-matrix” approach in statistical physics are all special
cases of the BP algorithm.

BP algorithms come in many flavors. The goal of the version that we con-
sider here is to compute marginal probabilities for variables defined in a graph-
ical model. These graphical models are referred to in various communities as
Bayesian networks, Markov random fields, factor graphs, or statistical mechan-
ical spin systems. Computing marginal probabilities thus corresponds to com-
puting magnetizations for a spin system, or making a diagnosis in a Bayesian
network, or computing a bit value for an error-correcting code.

In a BP algorithm, variable nodes in a graphical model iteratively send each
other “messages” (see Figure 3). These messages are estimates that each variable
node has of its own state, given what it is told by all of its neighboring nodes
except for the node to which it is sending a message. If and when the iterative
algorithm converges, the desired marginal probabilities can be read off from the
converged messages.

It is known that BP is exact when the graphical model has a tree-like topol-
ogy; that is, when it has no cycles. However, the graphical models used in com-
puter vision, or those for error-correcting codes, are infested with cycles, and BP
still seems to give excellent approximate answers in these cases. The goal of the
MERL project described here was to understand why BP worked so well even
for cases when it seemed to have no justification [22,23].

At MERL, we showed that the fixed points of the BP algorithm are the same
as the stationary points of the “Bethe free energy,” which is an approximate
free energy for the graphical model. This deep connection between a classical
approximation in statistical mechanics and a classical algorithm in computer
science has important implications. For example, it means that by minimizing the
Bethe free energy, one can invent algorithms that have the same fixed points as
BP, but for which convergence is guaranteed [19, 25]. Moreover, it means that one
can ¢mprove upon the approximation made by BP, by improving upon the Bethe-
free-energy approximation. We have developed a theory of such generalized belief
propagation (GBP) algorithms [22, 23].

Algorithms that minimize the Bethe free energy directly have been shown
to improve upon standard BP decoding algorithms for state-of-the-art error-
correcting codes, by eliminating the failure mode of lack of convergence [16].
GBP algorithms have given improved results over BP algorithms for such dis-
parate problems as decoding error-correcting codes [21,20], and the computer
vision problem of recovering shading and reflectance information from a single
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Fig. 3. This figure illustrates BP message-update rules, operating on a “factor graph.”
A factor graph has two kinds of nodes: variable nodes, indicated by a circle, and function
nodes, indicated by a square. Variable nodes are connected to function nodes if they are
arguments of that function. Messages are sent from variable nodes to function nodes
and vice-versa according to a set of rules that can be derived by minimizing the Bethe
free energy, a measure from the field of statistical mechanics.



image [18]. GBP has inspired closely-related algorithms like “structured sum-
mary propagation,” which has been applied with good results to the problem of
synchronization using linear feedback shift registers [6]. Finally, GBP has been
combined with fast Fourier transforms to give an exciting new algorithm for
reconstructing missing data [17].

5 Dimensionality Reduction

Cheap sensing and storage devices have produced massive data streams, and
new challenges to researchers in data mining, machine learning, and machine
perception. Because data processing has not kept pace with data production, it
is often necessary to reduce data sizes by ”squeezing” out redundancies before
any expensive processing begins. This challenge of dimensionality reduction is
being met successfully by hybrid approaches that combine theory from many
fields with empirical methods such as simulation and visualization.

Where data can be interpreted as points in a vector space with a Euclidean
metric, squeezing out redundancy is usually synonymous with reducing the di-
mensionality of that space via subspace projection, e.g., principal components
analysis. The orthogonal basis of this subspace is computed via singular-value
or eigen-value decomposition. These decompositions are usually computed in
quadratic time. We have developed a linear-time online approximation for the
principal singular vectors and values of streaming data that is exact for data hav-
ing true low rank and provably convergent to the optimal vectors when high-rank
data arrives in a random order [5]. It is an enabling technology for compression
and correlational analysis of massive data sets and streams. For example, corre-
lated tastes between movie-goers in a 14-dimensional subspace of movie ratings
are remarkably accurate predictors of how well 1000s of people will like 1000s of
different movies. Since consumer tastes are non-stationary and not sampled at
random, there are interesting questions as to convergence rate and stability over
time, and thence sample and computational complexity.

Many data sets do not comfortably fit in low-dimensional linear subspaces.
Instead, the data lies on some low-dimensional manifold embedded with curva-
ture in the high-dimensional measurement space. Recently there has been great
ferment in nonlinear dimensionality reduction, which aims to unfurl the manifold
in a low-dimensional space so that the distribution of the data can be studied in a
linear space. This problem area is a rich interface between graph theory, differen-
tial geometry, and statistics. Nearly all current methods have (unacknowledged)
ancestry in Tutte’s theorems on graph embeddings from the 1960s, which view
data points as vertices in a locally connected graph that is to be embedded
in a Euclidean space with minimal distortion. We have shown how to estimate
smooth maps that relate the original data space to a coordinate system intrinsic
to the manifold, so that, for example, high-resolution 3D scans of human faces
can be assigned low-dimensional coordinates, and novel faces can be synthesized
by varying those coordinates as if they were a linear system [4]. Although this
depends on a locally linear approximation of the manifold, we have shown that



a slight elaboration of the scheme is capable of exact isometric embeddings of a
significant class of curved manifolds that includes developable surfaces. A sam-
ple reconstruction is shown in Figure 4. Although these methods have already
seen extensive practical use, the relationship between topology, geometry, and
sample complexity remains largely unexplored.

Fig. 4. A kernel-based reconstruction of a non-linear manifold.

6 Shape Representation

The representation of geometry is a fundamental topic in computational geome-
try. Different representations are usually compared in terms of the computational
efficiency of different computations on those representations. However, efficiency
of computation is but one criterion: for digital typography several other measures



are relevant. These additional criteria include perceptual measures, aesthetic
design considerations, and ease of hardware implementation: these criteria are
inherently empirical.

The dominant paradigm for representing high-quality, antialiased, scalable
type is hinted outline fonts [1]. Outline fonts render horribly as they scale unless
hints—arbitrary procedures—are provided that perform grid fitting and geomet-
ric adjustment for a given scale (see Figure 5). Hints have to be crafted by hand
for each typeface by skilled typographers. The arbitrary nature of hints makes
hardware implementation problematic.
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Fig. 5. Hints for grid fitting and other geometric adjustments radically improve the
quality of rendered type for conventional outline fonts. An unhinted rendering is shown
on the left; a hinted rendering of the same character is shown on the right.

Saffron is a new digital font technology that represents 2D shape with adap-
tively sampled distance fields [7, 15]. A distance field is an implicit representation
of shape. A continuous distance field can be represented by regular samples (see
Figure 6). However, regularly sampled distance fields are too big and inefficient
and do not provide enough detail in some critical regions, such as corners.

Adaptive sampling preserves geometric detail where needed. An adaptively
sampled distance field can be stored in an efficient spatial data structure (see
Figure 7). The original shape can be reconstructed using various methods: bi-
quadratic interpolation is one good technique. Antialiased images can be com-
puted directly from the distance field, in contrast to the approximate area-
coverage computations used with other representations (see Figure 8). Thus
Saffron type can be rendered without hints. The simple rendering algorithm is
amenable to hardware implementation.

7 Conclusions

It is likely that the projects described here are very different from those described
in the other papers in this proceedings. Theoretical computer science is useful
for applied computing, but usually only when combined with other techniques



Fig. 6. A distance field gives signed distance values at each point in the plane: these
values correspond to the shortest distance to an outline edge. The continuous field
depicted on the right can be represented inefficiently by the discrete regular samples
depicted in the center.

Fig. 7. A depiction of an adaptively sampled distance field for the character ’'S’.
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Fig. 8. A comparison of different representations and rendering algorithms, from top
to bottom: unhinted outlines, box filter, four samples per pixel; unhinted outlines,
Gaussian filter, sixteen samples per pixel; hinted outlines with sophisticated filtering
and multiple samples per pixel (a proprietary algorithm); unhinted adaptive distance
fields (Saffron), one sample per pixel.

and when evaluated and refined empirically. A broader view of what constitutes
computer-science theory can make it more useful for the many varied problems
that arise in applied computing.
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