A New Method For
Numerical Constrained Optimization

Ronald N. Perry
Mitsubishi Electric Research Laboratories

Motivation

The applicability of optimization methods is
widespread, reaching into almost every activity in
which numerical information is processed

For a summary of applications and theory
See Fletcher “Practical Methods of Optimization”

For numerous applications in computer graphics

See Goldsmith and Barr “Applying constrained
optimization to computer graphics”

In this sketch, we describe a method and not its
application

Informal Problem Statement

An ideal problem for constrained optimization
has a single measure defining the quality of a solution
(called the objective function F)

plus some requirements upon that solution that must not
be violated (called the constraints C,)

A constrained optimization method maximizes (or
minimizes) F while satisfying the C.’s

Both F and C,’s are functions of x € RN, the input
parameters to be determined

Informal Problem Statement

Many flavors of optimization
X can be real-valued, integer, mixed

F and C;’s can be linear, quadratic, nonlinear

F and C,’s can be smooth (i.e., differentiable) or
nonsmooth

F and C,’s can be noisy or noise-free
methods can be globally convergent or global

Our focus
globally convergent methods

real-valued, nonlinear, potentially nonsmooth,
potentially noisy, constrained problems

Our Contribution

A new method for constraint handling, called
partitioned performances, that
can be applied to established optimization algorithms

can improve their ability to traverse constrained space

A new optimization method, called SPIDER, that

applies partitioned performances to a new variation of
the Nelder and Mead polytope algorithm

An observation leads to an idea

Observation

Many constrained problems have optima that lie near
constraint boundaries

Consequently, avoidance (or approximations) of
constraints can hinder an algorithm’s path to the answer

Idea

By allowing (and even encouraging) an optimization
algorithm to move its vertices into constrained space, a
more efficient and robust algorithm emerges

The i1dea leads to a method

Constraints are partitioned (i.e., grouped) into
multiple levels (i.e., categories)

A constrained performance, independent of the
objective function, is defined for each level

A set of rules, based on these partitioned
performances, specify the ordering and movement
of vertices as they straddle constraint boundaries

These rules are non-greedy, permitting vertices at a
higher (i.e., better) level to move to a lower (i.e.,
worse) level

Partitioned Performances (advantages)

Do not use a penalty function and thus do not warp
the performance surface

this avoids the possible ill-conditioning of the objective
function typical in penalty methods

Do not linearize the constraints as do other
methods (e.g., SQP)

Assume very little about the problem form

F and Ci’s can be nonsmooth (i.e., nondifferentiable)
and highly nonlinear

Partitioning Constraints

One effective partitioning of constraints
place simple limits on x € RN into level 1 (e.g., x, > 0)

place constraints which, when violated, produce
singularities in F into level 1

all other constraints into level 2

and the objective function F into level 3

Many different strategies for partitioning
just two levels: constrained and feasible
a level for every constraint, and a feasible level

dynamic partitioning (changing the level assignments
during the search)

Computing Performance

Assume a partitioning of F and the C,’s into W
levels [L,...L,JwithL = {F}

We define the partitioned performance of a
location x € RNas a 2-tuple <P,L> consisting of a
floating point scalar P and an integer level
indicator L. P represents the “goodness” of x at
level L.

Computing Performance

To determine <P,I.>
sum the constraint violations in each level

L is assigned to the first level, beginning at level 1, to
have any violation and P is assigned the sum of the
violations at L

if no violations occur, L < W and P < F(x)

Comparing Performances

The partitioned performances of two locations x,
(<P,,L,>) and x, (<P,,L,>) are compared as
follows:
if (L, =1L,
if (P, > P,) x, is better, otherwise X, is better
if (L, > L)
X, 1s better
if (L,>L))

X, 1s better

SPIDER Method

Applies partitioned performances to a new
variation of the Nelder and Mead polytope
algorithm

Rules for ordering and movement using partitioned
performances are demonstrated

What 1s a “SPIDER”?

Assuming we are maximizing an n-dimensional
objective function F, SPIDER consists of n+1

“legs”, where
each leg contains its position in space

associated with each leg is a partitioned performance

What 1s a “SPIDER”?

When n =2, a triangle When n = 3, a tetrahedron

What does SPIDER do?

Crawl: each leg is at a known “elevation” on the
performance “hill”, and it is SPIDER’s task to
crawl up the hill and maximize performance

How SPIDER walks

By moving each leg through the centroid of the
remaining legs
Before reflection and expansion

Leg to be

moved Centroid

Za N\

After reflection and expansion

How SPIDER walks

Repeat N times
Sort legs of SPIDER, from worst to best. Label worst and best legs.
For each leg L, in worst to best order
Determine centroid
Compute position and performance of a trial leg, L, ;,,
if L is not the best leg, reflect and expand through centroid
if Lis the best leg, reflect and expand away from centroid
If move successful, accept trial, relabel worst and best leg if
required
EndFor
Shrink SPIDER if best leg has not improved

Rebuild SPIDER if successive shrinks exceed threshold

EndRepeat

Rules for centroid computation

Exclude leg being moved (L)

Exclude legs at a lower level than L

this helps to give SPIDER a better sense of direction
along constraint boundaries

L]
L]
Legs
excluded Centroid
.
L]

L]

Before o
move

Level 1 Level 2 Level 3 (Feasible)

Rules for moving a non-best leg

Same level (level of L = level of L)
accept trial leg if

P value of L

trial

> P value of L

trial

Going down levels (level of L,.;,; < level of L)
accept trial leg if its better than the worst leg

Going up levels (level of L,;,; > level of L)

accept trial leg if its better than the best leg

10

Rules for moving the best leg

It must improve in performance in order to move

This gives SPIDER the ability to “straddle” and
thus track along a constraint boundary

Rules for shrinking SPIDER

Shrink the vertices at the same level as the best leg toward
the best leg, and flip (as well as shrink) vertices at lower
levels over the best leg

Flipping helps to move legs across a constraint boundary
towards feasibility

Level 1: Infeasible Level 2: Feasible
e before shrink

o shrink: no flip

3 shrinke with flip

2D

11

A Matlab Test Problem

Sequential Quadratic Programming (SQP) methods
represent the state-of-the-art in nonlinear
constrained optimization

SQP methods out perform every other tested
method in terms of efficiency, accuracy, and
percentage of successful solutions, over a large
number of test problems

On a Matlab test problem
Matlab SQP Implementation, 96 function calls

SPIDER, 108 function calls

A Matlab Test Problem

SPIDER walk in blue, SQP walk in black

12

The End

de <ot 5 1g.h» #define MAX DINS 20 #define MAX LEG

(LEGS 25 #define MAX (20 fdefine DFT_SHRINK_
e fidefine DFT_LOG_PATH 0 fdefins VEREOSE 1 a . jrunc) (£
e (

int numleg

curLeg) [§]

IDERRebuild()y
berf .4t 1 o e pe
£

dim; ++]
buildmultE

) { £

el

S-sstartet
printé ("Fun

. 3 ace(0] = 1.0f
rinkFa DET_SHRINK_FA(rinksBef, « DET_BUILD_ME,
S.nunFunccalls - 0; SPI : cle(ss, 50); }

