

Current Saffron Type System

Toolkit Approach

- The API is structured as a toolkit with 4 major functional blocks
 - Conversion of glyph outlines to ADFs
 - Rendering ADFs as density images
 - Determining alignment zones directly from ADFs, thereby enabling grid fitting during ADF rendering
 - A dual caching system for ADFs and density images

Additional Tools

- Validation tools
 - View ADF cells
 - View alignment zones
- Validation scripts for QA
 - Test all aspects of the system, including timing and memory requirements
- Example code demonstrating API usage
 - Fundamentals (e.g., ADF generation and rendering)
 - Grid fitting to the pixel and sub-pixel
 - Preserving metrics when grid fitting

Additional Tools

- Additional functionality
 - e.g., grid fitting for glyphs typeset at 90, 180, 270 degrees for all display modes (CRT, RGBv, BGRv, etc.)

Basic Data Flow and Processing

5. Destroy the caches

6. Terminate the system

API Structure

- Memory Allocation
- Fundamental Data Types
- Initialization and Termination of the System
- Glyph Outlines
- ADF Generation from Glyph Outlines
- Alignment Zone Detection
- Density Images
- Rendering
- Dual Caching System

Alignment Zones

- Use of alignment zones
 - Determined directly from the ADF
 - Define strong vertical and horizontal edges of the glyph and characteristic distances of a typeface
 - Baseline to x-height and baseline to cap-height distances
 - Spacing between repeated vertical stems
 - Left edge of a glyph
 - Used to build the appropriate transformation needed for grid fitting each ADF to the pixel grid or pixel component grid

Rendering

- Density images
 - Glyphs are rendered into density images
 - For each pixel or pixel component in the density image
 - Transform the pixel location to a sample point in the ADF
 - Reconstruct the distance field at the sample point
 - Map the reconstructed distance to a density value
 - Density images can be used by the application to blend a foreground color (e.g., a text color) with a background color or a background image to produce a colored image of the rendered glyph

Limitations of Saffron -V1

Alignment Zones

- Current alignment zones include baseline, xheight or cap-height, and two vertical stems
- Some Latin glyphs would benefit from more alignment zones
 - Glyphs with 2 vertical or horizontal zones (e.g., e, F, m)
 - Glyphs with descenders (e.g., p,q,y)
- Need multiple alignment zones or new approach for best results in complex characters

 e.g., CJK fonts

Saffron Roadmap

- Direct rendering
 - Solution for memory and processor constrained systems
- Hardware implementations
 - Special cell rendering
 - Direct rendering
 - Low power requirements?
 - Market potential? (Mitsubishi internal vs. broader markets)

Saffron Roadmap

- High quality small CJK
 - High quality stroke-based fonts with
 - Variable stroke weight
 - Various endcaps
 - Rounded, square, mitered, beveled, brushed
 - Alignment zones and grid fitting
 - Direct rendering
 - Automatic generation from outlines
 - Design tool

• See separate presentation

Advantages Over Traditional Approaches

Advantages

- Special effects
 - CSM control
 - Inexpensive thin and bold typefaces
 - Temporal anti-aliasing
 - Motion blur
 - Using the distance field for special effects such as softbody deformation and particle systems
 - 3D type