
Saffron Type System

May 2, 2005

Outline

• How Saffron Works Today

– Science and implementation

• Saffron Demonstration

• Limitations of the Current Approach

• Saffron Roadmap

– Direct rendering

– Hardware implementations

– High quality small CJK

– Enhancements and extensions

• Advantages over traditional approaches

Background

Distance Fields

• An informal definition

– The 2D distance field of a shape represents, for any
point in space, the signed minimum distance from that
point to the edge (i.e., outline) of the shape

Shape Shape’s distance field

Advantages of Distance Fields

• Conceptual advantages over outlines

– Represent more than the object outline

• Object interior, exterior, and the outline

• Represents an infinite number of offset surfaces

Shape Shape’s distance field

Advantages of Distance Fields

• Conceptual advantages over outlines

– Gains in efficiency and quality because distance fields vary
smoothly (C0 continuous) and throughout space

Intensity profile of outline representation Intensity profile of distance field

A A’

A A’

B B’

B B’

Advantages of Distance Fields

• Conceptual advantages over outlines

– Gradient of the distance field yields

• Surface normal for points on the edge

• Direction to the closest edge point for points off the edge

Point off the edge

Point on the edge

Advantages of Distance Fields

• Practical advantages

– Smooth reconstruction of the edge

• Continuous reconstruction of a smooth field rather than a
continuous (i.e., analytic) or discrete (i.e., supersampled)
reconstruction from a discrete representation

– Trivial inside/outside and proximity testing

• Using sign and magnitude of the distance field

Advantages of Distance Fields

• Practical advantages

– Fast and simple Boolean operations

• Intersection: dist (A^B) = min(dist(A), dist(B))

• Union: dist(AUB) = max(dist(A), dist(B))

Advantages of Distance Fields

• Practical advantages

– Fast and simple Boolean operations

• Intersection: dist (A^B) = min(dist(A), dist(B))

• Union: dist(AUB) = max(dist(A), dist(B))

Advantages of Distance Fields

• Practical advantages

– Fast and simple offsetting

• Offset by d: dist(Aoffset) = dist(A) + d

Advantages of Distance Fields

• Practical advantages

– Enables geometric queries such as closest point

• Using gradient and magnitude of the distance field

Follow gradient to

closest point on outline

Distance Field Representations

• Analytic representation

– For example, circle of radius R centered at (cx, cy)

 d(x,y) = (R2 – ((x-cx)
2 + (y-cy)

2))½

– Problem

• Unless the shape is simple, the analytic representation is
difficult to determine and complex

Distance Field Representations

• Sampled Representation

– Distance Maps: Regularly sampled distance fields

2D shape with sampled

distances to the surface

Regularly sampled distance

values

2D distance field

-65
20

-90

Distance Field Representations

• Sampled Representation

– Drawbacks

• Must sample at high enough rates to capture all the
important detail such as

– Corners

– Voronoi region boundaries

• Regular sampling  if there is any detail present, the
whole field must be sampled at high rates

Distance Field Representations

• Adaptively Sampled Distance Fields

– Detail directed sampling

• Sample at higher rates where there is significant variance
in the distance field

• Sample at lower rates where the distance field varies
slowly or where accuracy is not needed

– e.g., for points beyond a specified distance from a glyph’s
edge

Distance Field Representations

• Adaptively Sampled Distance Fields

– Use detail-directed sampling of the distance field

– Store sampled distances in a data structure for efficient
processing

• Have used hierarchical representations which have other
advantages (e.g., level-of-detail)

– Provide a reconstruction method for reconstructing the
distance field from the sample points

Distance Field Representations

• Adaptively Sampled Distance Fields

Bilinear Cell ADF

Distance Field Representations

• Adaptively Sampled Distance Fields

Barycentric Cell ADF

Distance Field Representations

• Adaptively Sampled Distance Fields

Biquadratic Cell ADF

Distance Field Representations

• Adaptively Sampled Distance Fields

Special Cell ADF

Distance Fields for Type

• Anti-aliasing

– Traditional anti-aliasing estimates pixel intensity
according to coverage

• How much of the filter footprint is covered by the object

• Requires expensive analytic filter or many supersamples to
approximate the coverage at each sample point

Filter footprint

Sample point

Area covered by

filter footprint

Intensity = coverage(P, footprint)

Distance Fields for Type

• Anti-aliasing

– Distance-based anti-aliasing

• Reconstruct distance at sample point and map to density

• Requires only a single sample per sample point

• Provides quality at least as good as exact analytic
coverage-based methods and superior to supersampling

Sample point

Density = distToDensity(dist(P))

Distance Fields for Type

• Anti-aliasing

– Distance to density mapping

Distance

Density

Inside

cutoff

max

Outside

cutoff

Distance Fields for Type

• Distance-based anti-aliasing

– Quality is good because the distance field varies
smoothly

• Single distance sample captures proximity to the edge

• Single coverage sample can miss the edge even when close

Sampled outline of

a Palentino ‘u’

Distance field of a

Palentino ‘u’

Distance Fields for Type

• Distance-based anti-aliasing

– Distance field of a moving glyph doesn’t change much
from frame to frame

• Distance field provides good quality temporal anti-aliasing

• Coverage via sampling can have discrete jumps in
coverage between frames (blinking and popping)

Sampled values can vary significantly between

frames when outlines are animated

The distance field varies

smoothly between frames

Distance Fields for Type

• Distance-based anti-aliasing

– Continuous stroke modulation (CSM)

• Vary the outside and inside cutoff values when mapping
distance to density

• Continuous variation of

– Stroke weight (stroke thickness)

– Edge sharpness

Continuous Stroke Modulation

Distance

Density

Inside

cutoff

max

Outside

cutoff

Distance

Density

Inside

cutoff

max

Outside

cutoff

Distance

Density

Inside

cutoff

max

Outside

cutoff

Softer edge Sharper edge

Thicker stroke Thinner stroke

Distance

Density

Inside

cutoff

max

Outside

cutoff

Continuous Stroke Modulation

Continuous Stroke Modulation

Distance Fields for Type

• Good anti-aliasing is not sufficient for good
quality type

– Using only anti-aliasing results in

• Fuzzy edges

• Non-uniform stroke weights

• Inconsistent cap-heights, x-heights, and other
characteristic distances

– Type looks best when

• Edges have high contrast

– Strong vertical stems and horizontal bars must be aligned to
the pixel grid

• Stroke weights are uniform

• Characteristic distances are consistent

Distance Fields for Type

• Good anti-aliasing is not sufficient for good
quality type

– Saffron

• Detects strong vertical and horizontal glyph edges
automatically

• Uses these edges to define cap-heights, x-heights, and
other characteristic distances

• Aligns these characteristic distances to the pixel grid during
rendering

Distance Fields for Type

• Edge detection

– Fortunately, edge detection is straightforward for
distance fields

• Render an image of the distance field from the ADF

• Apply standard image processing techniques to detect
vertical and horizontal edges in the distance field

– For left edges:

» Filter image to detect left-to-right crossings of the
distance field’s zero-valued iso-surface

» Sum filtered values along columns of the distance image

» Strong left edges occur in columns where the summed
values are large

– Detecting edges from outlines is more complicated …

Distance Fields for Type

• Using the Distance Field Gradient

– The gradient is used to detect stroke centerlines and the
distance field is used to determine stroke thickness

– Strokes can be thickened during rendering

Weak thin strokes Corrected glyph after thin

strokes were detected and

strengthened

Distance field of glyph

At stroke centers

- Discontinuous gradient

- Positive distance

Distance Fields for Type

• Using the Distance Field Gradient

– Detecting and modifying specific edges

• e.g., Left, right, bottom, top

Weak left edges Corrected glyph after left

edges were detected and

strengthened

Distance Fields for Type

• Using the Distance Field Gradient

– Use the gradient direction to

• Detect specific offset regions (e.g., left, right, top, bottom)

• Render directed shadows

• Render motion blur

Distance Fields for Type

• Using the Distance Field

– Animation effects

• e.g., soft body deformation via implicit blends

• e.g., particle systems

Distance Fields for Type

• Using the Distance Field

– 3D type

Current Saffron Type System

Toolkit Approach

• The API is structured as a toolkit with 4 major
functional blocks

– Conversion of glyph outlines to ADFs

– Rendering ADFs as density images

– Determining alignment zones directly from ADFs,
thereby enabling grid fitting during ADF rendering

– A dual caching system for ADFs and density images

Additional Tools

• Validation tools

– View ADF cells

– View alignment zones

• Validation scripts for QA

– Test all aspects of the system, including timing and
memory requirements

• Example code demonstrating API usage

– Fundamentals (e.g., ADF generation and rendering)

– Grid fitting to the pixel and sub-pixel

– Preserving metrics when grid fitting

Additional Tools

• Additional functionality

– e.g., grid fitting for glyphs typeset at 90, 180, 270
degrees for all display modes (CRT, RGBv, BGRv, etc.)

Basic Data Flow and Processing

1. Initialize the system

2. Preprocess the required glyphs to determine
their alignment zones
– Initialize alignment zone detection for specified typeface

– Detect the alignment zones for all required glyphs in the specified
typeface

– Terminate alignment zone detection for the specified typeface

3. Create an ADF cache and a density image cache

Basic Data Flow and Processing

4. Typeset and render each glyph

 - Query the density image cache for the rendered glyph

 - Upon a cache miss
 - Query the ADF cache for the glyph's ADF
 - Upon a cache miss
 - Generate the glyph's ADF from its outlines
 - Insert the glyph's ADF into the ADF cache
 - Render the glyph's ADF into a density image using the
 glyph's alignment zones for grid fitting
 - Insert the density image into the density image cache

 - Composite the glyph's density image into the display buffer

 - Advance the pen position using adjustments determined during
 grid fitting

Basic Data Flow and Processing

5.Destroy the caches

6.Terminate the system

API Structure

• Memory Allocation

• Fundamental Data Types

• Initialization and Termination of the System

• Glyph Outlines

• ADF Generation from Glyph Outlines

• Alignment Zone Detection

• Density Images

• Rendering

• Dual Caching System

Generating ADFs

• ADF representation

– Spatial hierarchy of cells

• Current system uses a quadtree hierarchy of square cells

• Each cell contains a set of sampled distance values and a
reconstruction method

• There are various cell representations and corresponding
reconstruction methods

Generating ADFs

• Top down generation

– Start with root cell

– Recursively subdivide cells into smaller cells until either

• A maximum generation level is reached

• The difference between the reconstructed distance field in
a cell and the true distance field in the cell is less than a
specified error tolerance

Special Cell ADFs

• Use a variety of cell types

– Intermediate cells of the quadtree

• Contain offsets to child cells and no distance values

– Single section cells (cells closest to a single smooth
section of the outline)

• Contain 9 distance values (16 bit S.15 format) and use a
biquadratic reconstruction method

Special Cells

– Two section cells (cells closest to two smooth sections)

• Represent regions near thin stems and arcs

– Distance field closest to two different sections of the outline

• Contain 9 distance values for each section (18 total)

• Reconstruct the distance field of each section separately
using biquadratic interpolation

• Reconstruct the distance field for the two section cell using
CSG intersection of the two distance fields

= 

Special Cells

– Corner cells (cells closest to a corner of the outline)

• Represent regions near corners of the glyph

– Distance field closest to corners

• Contain 9 distance values for each section framing the
corner and 6 values representing corner data (24 total)

• Use the corner data to determine whether a sample point is
closest to the corner point or to the two sections

• Reconstruction method depends on sample point location

Region closest

to corner point

Region closest to

the two sections

framing the corner

Cell containing a corner Distance reconstruction regions

Special Cells

Biquadratic ADF Special Cell ADF

Special Cell ADF Generation

• Pre-process outlines to partition the path into
sections and corners

Section includes all the lines and

curves between two corner points

Corner points where

the path’s tangent is

C1 discontinuous

Special Cell ADF Generation

• Use top down generation, starting with root cell

– Recursively subdivide cells into smaller cells until either

• A maximum generation level is reached

• Cell distance field represents true distance field within a
specified error tolerance

– During distance computation, annotate distances according to
their closest section or corner

– For each cell, section and corner annotation is used to
determine cell type (corner, one section, two section)

Alignment Zones

• Use of alignment zones

– Determined directly from the ADF

– Define strong vertical and horizontal edges of the glyph
and characteristic distances of a typeface

• Baseline to x-height and baseline to cap-height distances

• Spacing between repeated vertical stems

• Left edge of a glyph

– Used to build the appropriate transformation needed for
grid fitting each ADF to the pixel grid or pixel component
grid

Alignment Zones

• Determining alignment zones

– Three step process:

• Initialize alignment zone detection for a specified typeface

– Determine x-height and cap-height from particular glyphs of
the typeface (i.e., ‘z’ and ‘Z’)

• Detect alignment zones for each required glyph in the
specified typeface

– Use table to specify expected alignment zones for each glyph
in Latin fonts

• Terminate alignment zone detection for the specified
typeface

– Can be done once (offline) and stored with the glyph’s
ADFPath

• Requires at most 64 bits per glyph

Rendering

• Density images

– Glyphs are rendered into density images

• For each pixel or pixel component in the density image

– Transform the pixel location to a sample point in the ADF

– Reconstruct the distance field at the sample point

– Map the reconstructed distance to a density value

– Density images can be used by the application to blend
a foreground color (e.g., a text color) with a background
color or a background image to produce a colored image
of the rendered glyph

Rendering

• Rendering Steps

– Set the render state (e.g., point size, display mode …)

– Call the render setup function to determine data used
for rendering and typesetting

• Render setup determines a matrix transformation that
places the glyph in the display window

• The matrix transformation represents any affine
transformation, i.e., translation, rotation, scale, shear,
reflection, etc.

– Create a density image of the required size

– Render the glyph into the density image

LCDs and Alternative Pixel Patterns

• Coverage-based anti-aliasing requires multiple
samples per pixel component for supersampling

– TrueType takes advantage of the RGB-striped LCD pixel
pattern to reuse samples

– Each different striping patterns requires different
strategy to reuse samples (not hard, just inconvenient)

– Irregular patterns can’t reuse samples as easily

Two alternative pixel patterns used by Clairvoyante

LCDs and Alternative Pixel Patterns

• Distance-based anti-aliasing only requires one
sample per pixel component

– Different patterns do not affect efficiency

• A simple modification to the transform from image
coordinates to ADF coordinates is required

– Library supports RGBv, BGRv, RGBh, BGRh

– Effectiveness for alternative pixel patterns already
demonstrated

– CSM makes it easy to adjust stroke weight and contrast for
new pixel patterns and to compensate for color fringing

Hardware Implementation

• Saffron – V0 (Biquadratic cells only)

Hardware Implementation

• Saffron – V0 (Biquadratic cells only)

– 156K gates on an FPGA

• Includes memory controllers for accessing fonts and frame
buffers

• Includes compositing (triple buffered)

– Renders 100,000 glyphs per second at 100 MHz for 10
point, 96 dpi, LCD rendering (3 samples per pixel)

– Current implementation has a single component pipeline

– Designed for a 3 component pipeline (3x as fast at a
cost of 20K-30K additional gates per pipeline)

Patents

• Detail-Directed Hierarchical Distance Fields: U.S. Patent No.
6,396,492

• Method for Antialiasing an Object Represented as a Two-
Dimensional Distance Field in Image-Order

• Method for Antialiasing an Object Represented as a Two-
Dimensional Distance Field in Object-Order: Allowed

• Method for Animating Two-Dimensional Objects

• Method for Converting Two-Dimensional Objects to Distance Fields

• Method for Converting a Two-Dimensional Distance Field to a Set
of Boundary Descriptors

• Method for Converting Two-Dimensional Pen Strokes to Distance
Fields

• Method for Generating a Two-Dimensional Distance Field within a
Cell Associated with a Corner of a Two-Dimensional Object

Patents

• Method and Apparatus for Antialiasing a Set of Objects
Represented as a Set of Two-Dimensional Distance Fields in
Image-Order

• Method and Apparatus for Antialiasing a Set of Objects
Represented as a Set of Two-Dimensional Distance Fields in
Object-Order: Allowed

• Method for Generating a Composite Glyph and Rendering a Region
of the Composite Glyph in Image-Order

• Method for Generating a Composite Glyph and Rendering a Region
of the Composite Glyph in Object-Order

• Methods for Generating an Adaptively Sampled Distance Field of
an Object with Specialized Cells

• Method and Apparatus for Rendering Cell-Based Distance Fields
Using Texture Mapping: Allowed

• Method for Typesetting a Set of Glyphs Represented as a Set of
Two-Dimensional Distance Fields

Patents

• Method, Apparatus, and System for Rendering Using a Progressive
Cache

• Pipeline and Cache for Processing Data Progressively

• Modeling and Combining Multiple Graphics Objects

• System and Method for Generating Adaptively Sampled Distance
Fields with Bounded Distance Trees

• Method for Traversing Quadtrees, Octrees, and N-Dimensional Bi-
trees: U.S. Patent No. 6,868,420

Patents

• Distinction from prior art

– Distance fields vs. images

– Distance-based anti-aliasing vs. coverage-based anti-
aliasing

– Sampling discrete space vs. sampling continuous space

– Derive alignment zones for grid fitting from distance
field, not from hinted outlines

– For typesetting, adjustments are made to advance
widths using distance fields after iso-contour selection

Limitations of Saffron – V1

Alignment Zones

• Current alignment zones include baseline, x-
height or cap-height, and two vertical stems

• Some Latin glyphs would benefit from more
alignment zones

– Glyphs with 2 vertical or horizontal zones (e.g., e, F, m)

– Glyphs with descenders (e.g., p, q, y)

• Need multiple alignment zones or new approach
for best results in complex characters

– e.g., CJK fonts

Issues and Unproven Features

• The predicate test used for special cell generation
is not fail proof

Special cell

generation failure

Issues and Unproven Features

• Non-uniform scale in x and y distorts the filter
region

• Some markets may require additional hint-level
fine tuning to provide ultimate control

• Rendering bitmaps from ADFs untested/unproven

– 2-bit rendering for eInk was successful

Memory and Processing

• Memory constrained devices

– ADFs may be too big

– 2D Distance field representation will always be bigger
than 1D outline representation

• Processor constrained devices

– Generation may be too slow

Saffron Roadmap

Saffron Roadmap

• Direct rendering

– Solution for memory and processor constrained systems

• Hardware implementations

– Special cell rendering

– Direct rendering

– Low power requirements?

– Market potential? (Mitsubishi internal vs. broader
markets)

Saffron Roadmap

• High quality small CJK

– High quality stroke-based fonts with

• Variable stroke weight

• Various endcaps

– Rounded, square, mitered, beveled, brushed

– Alignment zones and grid fitting

– Direct rendering

– Automatic generation from outlines

– Design tool

Saffron Roadmap

• Enhancements and extensions
– CSM profile builder

– Alignment zones for non-latin fonts
• Hindu, Arabic

• More general approach (e.g., multiple alignment zones) for
CJK

• GPU implementation of direct rendering

• Extend library to support alternative pixel patterns

• Performance and size enhancements for Saffron –
V1

Direct Rendering

Direct Rendering

• See separate presentation

Advantages Over

Traditional Approaches

Advantages

• Sub-pixel rendering patent issues

– Saffron’s IP is comprehensive and patently-distinct from
Microsoft’s ClearType

– Traditional, coverage-based anti-aliasing approaches
encroach on Microsoft’s extensive patent portfolio

Advantages

• Hinting
– Saffron achieves high quality without hinting

– Some markets are encumbered by hinting (e.g., Flash
and SVG)

• Markets with size constraints (bandwidth, disk space,
memory space)

• Dynamic environments where applications have no control
over font quality (e.g., hints may not be available)

– Hinting new fonts is labor intensive and expensive

• Sub-pixel hinting
– Hinting fonts for sub-pixel rendering is even worse

– Legacy bug in hinting of certain glyphs (e.g., Arial ‘x’)

Advantages

• Hardware market

– Computationally clean rendering pipeline is
straightforward to implement in silicon

– No special casing of type vs. graphics

– Hardware prototypes

• Saffron – V0 hardware prototype exists

• Hardware implementations of Saffron – V1 and direct
rendering approach are under development

Advantages

• GPU implementation is straightforward

– Potential markets

• Desktop/laptop market (e.g., GPU-centric Longhorn)

• Console and handheld game market

• Embedded systems market

– GPUs will be increasingly incorporated into next generation
devices

– GPUs on today’s devices could support Saffron using Gouraud
shaded texture mapped triangles

Advantages

• High quality stroke-based CJK

– Can provide higher quality stroke-based fonts with a
small memory footprint

– Can provide much higher quality than current market
offerings

• Variable stroke weight

• Designed endcaps

Advantages

• Alternative pixel patterns and displays

– Saffron adapts easily to different sampling patterns

• Saffron requires only one sample per pixel component for
anti-aliasing

• Saffron doesn’t depend on the topology of the pattern

– Kodak OLEDs

– ClairVoyante Pentile

– Continuous Stroke Modulation (CSM) provides OEMS
with unprecedented control to tune type for their specific
displays

Advantages

• Special effects

– CSM control

– Inexpensive thin and bold typefaces

– Temporal anti-aliasing

– Motion blur

– Using the distance field for special effects such as soft-
body deformation and particle systems

– 3D type

