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Major Features in 3.0 

• Direct rendering 

• Fixed point implementation 

• Color Reduction 

• Grid-fitting for more alphabets 

• Support for stroke-based fonts 

 



 

Quick Review 

Distance Fields  

• What is a distance field? 

– The 2D distance field of a shape represents, for any point in 
space, the signed minimum distance from that point to the 
edge (i.e., outline) of the shape 

Shape Shape’s distance field 



Example  
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Distance Field Representations  

• Distance map using regularly spaced samples 

– Wasteful in both storage and time 

2D shape with sampled 

distances to the surface 
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Distance Field Representations  

• Adaptively Sampled Distance Fields 

Generation and Rendering 

Generate ADF 

Render ADF 
- Locate cell 
- Reconstruct dist 
- Map to density 

Path 
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Terminology 

Generate ADF 

Render ADF 
- Locate cell 
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- Map to density 
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“Explicit ADF Generation” 

Explicit ADF Generation Issue #1 

Generate ADF 

Render ADF 
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Too slow for processor-
constrained devices 



Explicit ADF Generation Issue #2 

Generate ADF 

Render ADF 
- Locate cell 
- Reconstruct dist 
- Map to density 

Path 
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Glyph Attributes 
- Point size 

- Rotation angle 
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Too big to cache for 
memory-constrained 
devices 

Quality Issues With Explicit ADFs 

• Accuracy decreases as PPEMs increases  

– L7 ADFs are more accurate than L4 ADFs 

– But L7 ADFs are slower to generate and require more storage 

• Artifacts with non-uniform scaling 



Direct Rendering 

• General goals 

– Overcome performance and quality issues with explicit ADFs 

– Target processor-constrained and memory-constrained devices 

Direct Rendering Overview 

• Avoid explicit ADF generation 

• Render images directly from glyph outlines 

– Compute distance field on-the-fly 

– Traverse only important sample locations 

– Minimize distance computations 
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Comparison 

• Explicit ADF 

– Computes the distances for all potential images 

– Produces multiple images of the same glyph 

 

• Direct rendering 

– Computes the distances needed for only one image 

– Produces one image for a single set of glyph attributes 



Explicit ADF Rendering 
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Render ADF 
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Direct Rendering 
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Avoid Explicit ADF Generation 

• ADF generation replaced by glyph preprocessing 

• Preprocessing glyph outlines is efficient 

– 1000x faster than explicit ADF generation 

– Preprocessed outlines only 20% of explicit ADF storage sizes 

 

Quality Advantages 

• No compromises 

• Distance fields are 100% accurate 

– Scale to arbitrary size (unlike L4 and L7 explicit ADFs) 

– No issues with non-uniform scaling (unlike explicit ADFs) 



Performance Advantages 

• Generally outperforms explicit ADF rendering 

– Arial: Direct rendering is faster at 12 PPEMs and above 

– Verdana: Direct rendering is faster at 10 PPEMs and above 

• Summary: faster at normal PPEMs and higher 

 

 

Fixed Point Implementation 

• Mobile devices often lack floating point hardware 

• Saffron 3.0 is ready for mobile devices today 

– Efficient fixed point implementation of direct rendering 

– Simple #define enables fixed point arithmetic 

 

 



Demos 

• System 

– Dell Axim x51v 

– 640x480 16-bit LCD display (~170 dpi) 

Direct Rendering Summary 

• Overcomes speed/memory issues of explicit ADFs 

• Higher rendering quality than explicit ADFs 

• Higher rendering performance than explicit ADFs 

• Efficient fixed point implementation 

• Saffron 3.0 runs in real-time on mobile devices 

• Recompile only (no code changes) 

 



Why Color Reduction? 

• Principle of LCD rendering 

– Use separate samples at red, green, blue pixel locations 

– Trade off color accuracy for spatial resolution 

Why Color Reduction? 

• Problem: LCD rendering produces color fringes 



Color Reduction 

Color Reduction Algorithm 

Color Reduction Benefits 

• Minimizes color fringing 

• Makes tuning CSM parameters much easier 

• Can be used in fully automatic mode 

– No changes required for existing .swf files 

• API allows fine-tuning of color reduction 

– Not necessary in our experience 



Grid-Fitting 

• Alignment support for the following alphabets 

– Latin 

– Arabic 

– Devanagari 

– Hebrew 

– Thai 

Stroke-Based Fonts 

• Saffron 3.0 supports stroke-based fonts 

Outline-based glyph Stroke-based glyph 



Example 

 

Benefits of Stroke-Based Fonts 

• Enormous space savings 

– GB 2312 Simplified Chinese outline typeface: ~2.7 MB 

– Equivalent stroke-based typeface: < 256 KB 

• Faster rendering (about 2x) 

 



Supported Stroke Formats 

• Current release (3.0) 

– Uniform-width stroke fonts (e.g., MTI sticks) 

– Application-hinted stroke data (e.g., MTI CJK-14) 

• In development 

– Stylized Stroke Fonts (developed at MERL) 

• API can accept strokes from multiple sources 

 

Example: CJK-14 

• What is CJK-14? 

– Stroke-based typeface for CJK 

– Contains both alignment and simplification hints 

• Exceptional clarity down to 14 ppems 



CJK-14 Demos 

 

 

In Development 



Multiple Alignment Zones 

• Goal: better CJK rendering from outlines 

• Saffron 3.0 (and earlier) do not grid-fit CJK 

 

Multiple Alignment Zones 

• Analysis of CJK-oriented features in outlines 

Segment 

Stem 

Ladder 

Bounding Box 

Peak 

Bar 

Counter 



Multiple Alignment Zones 

• Convert to hints and then grid-fit 

 

Unaligned glyph outlines After grid-fitting 

Example 

 

Without Grid-Fitting With grid-fitting 



Live Examples 

 

More Details 

• Feature extraction is fully automatic 

• Extraction requires < 30 sec for ~11,000 glyphs 

– Research code (unoptimized) 

– Can likely be sped up a lot 

• Hints occupy ~60 bytes/glyph on average 

– Average glyph outline has ~120 points (~500 bytes) 



Stylized Stroke Fonts 

• Problems with uniform-width stroke-based fonts 

– Bland and unexpressive 

– Lacking cultural acceptance 

 
Monotype 

Stroke 
(SansMT2312) 

MS Mincho 

Epson Futo 
Gyoshu 

Stylized Stroke Fonts 

• Goal: Best of both worlds 

– Expressiveness of outline-based fonts 

– Memory requirements of stroke-based fonts 



Components 

• Stroke path 

– Composed of line segments and Bezier curves 

– Typically runs along the centerline of the stroke 

 

 

stroke path 

Components 

• Stroke profiles 

– Define the shape of the stroke  

– Specify the distance from the stroke path to a stroke edge 

 

Stroke profiles can be one-sided or two-sided 

stroke profiles 



Components 

• Stroke end 

– Represented as an outline 

– Determines the shape at each end of a stroke 

 

stroke ends 

Compression 

• How do Stylized Stroke Fonts save memory? 



Compression 

• Reuse end caps throughout the typeface 

– Transform end caps to match a given stroke body 

 

 

More Compression 

• Reuse profile sets throughout the typeface 

 

 



Even More Compression 

• Reuse stroke paths across multiple typefaces 

 

The same stroke path can be used for multiple typefaces 

Memory Cost Estimate 

• Memory costs for storing a simplified Chinese 
typeface with 7,663 characters 

 Representation Size Example 

Outlines 2.5 mb 

Uniform Stroke Fonts 250 kb 

Stylized Stroke Fonts 338 kb 

Stylized Stroke Fonts add ~25% to uniform stroke fonts 
for end caps and profile indices and 25kb for storing end 
caps and profile representations 



Demo and Example Images 

• Only 1 unique profile 

• Only 1 unique endcap 

• Memory cost: stroke-based font + a few bytes 

 


