
Saffron 3.0

October 4, 2006

Major Features in 3.0

• Direct rendering

• Fixed point implementation

• Color Reduction

• Grid-fitting for more alphabets

• Support for stroke-based fonts

Quick Review

Distance Fields

• What is a distance field?

– The 2D distance field of a shape represents, for any point in
space, the signed minimum distance from that point to the
edge (i.e., outline) of the shape

Shape Shape’s distance field

Example

Distance to closest

point on outline

Distance Field Representations

• Distance map using regularly spaced samples

– Wasteful in both storage and time

2D shape with sampled

distances to the surface

Regularly sampled distance values 2D distance field

-65
20

-90

Distance Field Representations

• Adaptively Sampled Distance Fields

Generation and Rendering

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

Terminology

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

“Explicit ADF Generation”

Explicit ADF Generation Issue #1

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

Too slow for processor-
constrained devices

Explicit ADF Generation Issue #2

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

Too big to cache for
memory-constrained
devices

Quality Issues With Explicit ADFs

• Accuracy decreases as PPEMs increases

– L7 ADFs are more accurate than L4 ADFs

– But L7 ADFs are slower to generate and require more storage

• Artifacts with non-uniform scaling

Direct Rendering

• General goals

– Overcome performance and quality issues with explicit ADFs

– Target processor-constrained and memory-constrained devices

Direct Rendering Overview

• Avoid explicit ADF generation

• Render images directly from glyph outlines

– Compute distance field on-the-fly

– Traverse only important sample locations

– Minimize distance computations

Confidential

Confidential

Confidential

Comparison

• Explicit ADF

– Computes the distances for all potential images

– Produces multiple images of the same glyph

• Direct rendering

– Computes the distances needed for only one image

– Produces one image for a single set of glyph attributes

Explicit ADF Rendering

Generate ADF

Render ADF
- Locate cell
- Reconstruct dist
- Map to density

Path

ADF

Glyph Attributes
- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt

6 pt

Direct Rendering

Direct
Rendering

Map to
Density Glyph Attributes

- Point size

- Rotation angle

- CSM params, …

72 pt

24 pt Map to
Density

Map to
Density

6 pt

Distance buffer

Path

Avoid Explicit ADF Generation

• ADF generation replaced by glyph preprocessing

• Preprocessing glyph outlines is efficient

– 1000x faster than explicit ADF generation

– Preprocessed outlines only 20% of explicit ADF storage sizes

Quality Advantages

• No compromises

• Distance fields are 100% accurate

– Scale to arbitrary size (unlike L4 and L7 explicit ADFs)

– No issues with non-uniform scaling (unlike explicit ADFs)

Performance Advantages

• Generally outperforms explicit ADF rendering

– Arial: Direct rendering is faster at 12 PPEMs and above

– Verdana: Direct rendering is faster at 10 PPEMs and above

• Summary: faster at normal PPEMs and higher

Fixed Point Implementation

• Mobile devices often lack floating point hardware

• Saffron 3.0 is ready for mobile devices today

– Efficient fixed point implementation of direct rendering

– Simple #define enables fixed point arithmetic

Demos

• System

– Dell Axim x51v

– 640x480 16-bit LCD display (~170 dpi)

Direct Rendering Summary

• Overcomes speed/memory issues of explicit ADFs

• Higher rendering quality than explicit ADFs

• Higher rendering performance than explicit ADFs

• Efficient fixed point implementation

• Saffron 3.0 runs in real-time on mobile devices

• Recompile only (no code changes)

Why Color Reduction?

• Principle of LCD rendering

– Use separate samples at red, green, blue pixel locations

– Trade off color accuracy for spatial resolution

Why Color Reduction?

• Problem: LCD rendering produces color fringes

Color Reduction

Color Reduction Algorithm

Color Reduction Benefits

• Minimizes color fringing

• Makes tuning CSM parameters much easier

• Can be used in fully automatic mode

– No changes required for existing .swf files

• API allows fine-tuning of color reduction

– Not necessary in our experience

Grid-Fitting

• Alignment support for the following alphabets

– Latin

– Arabic

– Devanagari

– Hebrew

– Thai

Stroke-Based Fonts

• Saffron 3.0 supports stroke-based fonts

Outline-based glyph Stroke-based glyph

Example

Benefits of Stroke-Based Fonts

• Enormous space savings

– GB 2312 Simplified Chinese outline typeface: ~2.7 MB

– Equivalent stroke-based typeface: < 256 KB

• Faster rendering (about 2x)

Supported Stroke Formats

• Current release (3.0)

– Uniform-width stroke fonts (e.g., MTI sticks)

– Application-hinted stroke data (e.g., MTI CJK-14)

• In development

– Stylized Stroke Fonts (developed at MERL)

• API can accept strokes from multiple sources

Example: CJK-14

• What is CJK-14?

– Stroke-based typeface for CJK

– Contains both alignment and simplification hints

• Exceptional clarity down to 14 ppems

CJK-14 Demos

In Development

Multiple Alignment Zones

• Goal: better CJK rendering from outlines

• Saffron 3.0 (and earlier) do not grid-fit CJK

Multiple Alignment Zones

• Analysis of CJK-oriented features in outlines

Segment

Stem

Ladder

Bounding Box

Peak

Bar

Counter

Multiple Alignment Zones

• Convert to hints and then grid-fit

Unaligned glyph outlines After grid-fitting

Example

Without Grid-Fitting With grid-fitting

Live Examples

More Details

• Feature extraction is fully automatic

• Extraction requires < 30 sec for ~11,000 glyphs

– Research code (unoptimized)

– Can likely be sped up a lot

• Hints occupy ~60 bytes/glyph on average

– Average glyph outline has ~120 points (~500 bytes)

Stylized Stroke Fonts

• Problems with uniform-width stroke-based fonts

– Bland and unexpressive

– Lacking cultural acceptance

Monotype

Stroke
(SansMT2312)

MS Mincho

Epson Futo
Gyoshu

Stylized Stroke Fonts

• Goal: Best of both worlds

– Expressiveness of outline-based fonts

– Memory requirements of stroke-based fonts

Components

• Stroke path

– Composed of line segments and Bezier curves

– Typically runs along the centerline of the stroke

stroke path

Components

• Stroke profiles

– Define the shape of the stroke

– Specify the distance from the stroke path to a stroke edge

Stroke profiles can be one-sided or two-sided

stroke profiles

Components

• Stroke end

– Represented as an outline

– Determines the shape at each end of a stroke

stroke ends

Compression

• How do Stylized Stroke Fonts save memory?

Compression

• Reuse end caps throughout the typeface

– Transform end caps to match a given stroke body

More Compression

• Reuse profile sets throughout the typeface

Even More Compression

• Reuse stroke paths across multiple typefaces

The same stroke path can be used for multiple typefaces

Memory Cost Estimate

• Memory costs for storing a simplified Chinese
typeface with 7,663 characters

 Representation Size Example

Outlines 2.5 mb

Uniform Stroke Fonts 250 kb

Stylized Stroke Fonts 338 kb

Stylized Stroke Fonts add ~25% to uniform stroke fonts
for end caps and profile indices and 25kb for storing end
caps and profile representations

Demo and Example Images

• Only 1 unique profile

• Only 1 unique endcap

• Memory cost: stroke-based font + a few bytes

