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Saffron 3.1 
Multiple Alignment Zones 

January 26, 2007 

Alignment Zones 

• Saffron 3.0 and earlier versions: 

– Grid fitting for Latin, Arabic, Devanagari, Hebrew, Thai 

– No grid fitting support for CJK 
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Multiple Alignment Zones 

• Saffron 3.1 adds grid fitting support for CJK 

– Supports both outlines and strokes 

– Completely automatic 

Comparison 

• Standard Alignment Zones 

– Detect alignment zones in a preprocess 

– Use alignment zones to grid fit at runtime 

– Used for Latin, Arabic, Devanagari, Hebrew, Thai 

 

• Multiple Alignment Zones 

– No preprocess 

– Detection and grid fitting are performed on-the-fly at runtime 

– Used only for CJK 
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Comparison (cont.) 

• Standard Alignment Zones 

– Ignores traditional hints embedded in typefaces 

– Requires 64 bits per glyph to store alignment zone data 

 

• Multiple Alignment Zones 

– Ignores traditional hints embedded in typefaces 

– Requires no additional storage (no preprocessing step) 

 

• Small footprint in both cases 

 

 

Outlines and Strokes 

• Different algorithms for outlines and strokes 
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Outlines and Strokes 

• Algorithm similarities: 

– Detect and align horizontal and vertical features 

– Grid fit horizontal and vertical features independently 

– Interpolate non-aligned features 

– No regularization 

 

• Recall: grid fitting is performed on-the-fly 

– Process includes both feature detection and alignment 

– Keep operations simple for efficiency 

Outline Algorithm Overview 

• Strategies: 

– Grid fit horizontal and vertical features independently 

– Grid fit independently in groups called “radicals” 

– Align coordinates to half-integers 

– Preserve original bar and stem widths (with some exceptions) 
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Outline Algorithm Inputs 

• Any outline-based CJK glyph 

– Raw unhinted coordinates 

Points and Contours 

 

72 points, 5 contours 
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Outline Algorithm Parts 

• Two parts, both performed at runtime: 

– Feature detection: steps 1 through 4 

– Grid fitting: step 5 

Step 1: Make Radicals 

• Organize contours into groups called “radicals” 

3 contours 

1 contour 

1 contour 
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Step 1: Make Radicals 

• Organize contours into groups called “radicals” 

– Each radical is a group of related glyph components 

– No connection to Chinese “radicals” 

– Grid fitting is done separately for each radical 

Step 1: Make Radicals 

• Definitions: 

– A contour C has parent P if P is the contour with the smallest 
bounding box that contains C’s bounding box. If no such P 
exists, then C has no parent. 

– Contours with no parents are called root contours 

– All other contours are called internal contours 
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Example 

Example 
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Example 

internal contours 

parent contour 

bounding boxes 

Example 

internal contours 

root contour 

root contour 

root contour 
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Step 1: Make Radicals 

• Definition: 

– A radical is a set of contours: a single root contour R and all 
internal contours whose root ancestor is R 

Example 

internal contours 

root contour 

root contour 

root contour 
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Example 

radical 
(3 contours) 

radical 
(1 contour) 

radical 
(1 contour) 

Radical Independence 

• Each radical is grid fit independently 

– Allows features (bars, stems) to be detected more accurately 

– More efficient 

 

• Descriptions on following slides are per-radical 

– i.e., apply the following steps for each radical 
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Step 2: Find Simple Segments 

• Definitions: 

– A vertical simple segment has two adjacent points with equal x 
values 

– A horizontal simple segment has two adjacent points with 
equal y values 

 

• In practice: 

– Consider two values within epsilon to be equal 

Example 

 



13 

Example 

 

Example 
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Step 3: Merge Simple Segments 

• Rules for merging simple segments: 

– aligned (e.g., same y coordinate for horizontal segments) 

– same orientation (e.g., left-to-right) 

Example 
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Example 

Step 4: Create Pairs 

• A segment pair consists of two merged segments 

• Requirements: 

– sufficient overlap 

– not too wide 

– segments have opposite orientations 

• Multiple pair configurations possible 

– optimize for configuration with thinnest pairs 

– not all segments will be paired 
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Example 

Example 
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Visual Review of Part 1 

 

Visual Review of Part 1 
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Visual Review of Part 1 

Visual Review of Part 1 
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Visual Review of Part 1 

Visual Review of Part 1 
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Visual Review of Part 1 

Visual Review of Part 1 
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Step 5: Grid Fit 

• Perform grid fitting in the following order: 

1. Segment pairs 

2. Unpaired segments 

3. All other points 

Segment Pairs 

• Rules: 

– Snap bottom segment to the nearest grid point 

– Determine top segment based on adjusted pair width 

 

• Competing goals: 

– Clarity (edge contrast) 

– Consistency (perceptually uniform stroke weights) 

 

• Should we round or preserve pair widths? 
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Rounding vs. Preserving 

Preserve original pair widths 
(one edge sharp, one edge fuzzy) 

Round pair widths to nearest integer 
(both edges sharp) 

Rounding vs. Preserving 

• Observations on rounding: 

– Optimizes clarity 

– Disastrous at small PPEMs (e.g., 14, 20, 24) 

– Acceptable at intermediate PPEMs (e.g., 36, 48, 60) 

– Superior at large PPEMs (about 80 and above) 

 

• Observations on preserving: 

– Optimizes consistency 

– Features become too thin at small PPEMs (e.g., 14, 20, 24) 
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Adjusted Pair Width 

• Rounding vs. preserving: 

– Preserve original pair widths at small and intermediate PPEMs 

– Round pair widths at large PPEMs (80 and above) 

 

• Small pair widths: 

– Force pair widths to be at least 0.5 pixels 

– Boost pair widths that lie between 0.5 and 1.0 pixels 

– Boosting is based on PPEM (between 14 and 30 PPEMs) 

– Good balance between clarity and consistency 

Example 
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Example 

Example 
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Example 

Example 
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Unpaired Segments 

• Snap unpaired segments to the nearest grid point 

Example 
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Example 

Remaining Points 

• Interpolate remaining points using anchors 

• Anchor points are: 

– points that have already been grid fit 

– local minima or maxima (i.e., local extrema) 
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Example 

 

Example 

 



29 

Demos 

 

Stroke Algorithm Overview 

• Strategies: 

– Grid fit horizontal and vertical features independently 

– Round stroke widths to the nearest integer (at least 1 pixel) 

– Maximize clarity by placing features at least 2 pixels apart 

– Do not group into radicals 
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Stroke Skeletons 

• Terminology: stroke skeletons and stroke width 

stroke skeleton 

stroke width 

Input Stroke Skeleton (not grid fit) 
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Horizontal and Vertical Segments 

After rounding to nearest grid points 
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After rounding to nearest grid points 

Colliding 
segments 

 

After resolving collisions 
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Rounded Stroke Width 

• Stroke width specified as fraction of em box 

– Typically either 3% or 5% 

 

• Round the stroke width to the nearest integer 

– Must be at least 1 pixel 

– If even, align skeletons to half-integers (0.5, 1.5, 2.5, ...) 

– If odd, align skeletons to integers (0, 1, 2, ...) 

Step 1: Find Segments 

• Definitions: 

– A vertical segment has two adjacent points with equal x values 

– A horizontal segment has two adjacent points with equal y 
values 

 

• In practice: 

– Consider two values within epsilon to be equal 
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Step 2: Grid Fit Segments 

• Round each segment to the nearest grid point 

Before rounding After rounding 

Step 3: Avoid Collisions 

• Segments collide if they are 1 pixel apart 

• Colliding segments appear as one thick segment! 

Before rounding After rounding 

1 pixel: collision 
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Step 3: Avoid Collisions 

• Try to space segments at least 2 pixels apart 

• Collisions are resolved using three rules: 

1. Try to round down the bottom segment(s) 

2. Try to round up the upper segment 

3. Round bottom and upper segments to the same grid point 

Collision Resolution Details 

• Consider two segments B and U that collide 

– B is the bottom segment 

– U is the upper segment 

Before rounding After rounding 

1 pixel: collision 

B 

U 
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Collision Resolution Step 1 

• Try to round down B 

– B must currently be rounded up 

– Rounding down must not cause B to collide with any 
overlapping segments below it 

– Recursively round down all overlapping segments below B if 
necessary 

Example #1 

• Situation: 

– B is rounded up 

– B has no overlapping segments below it 

– Therefore, round down B 

B 

U 

Before rounding After rounding to nearest After rounding B down 
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Example #2 

• Situation: 

– B is already rounded down 

– Therefore, cannot resolve collisions by rounding down B 

B 

U 

Before rounding After rounding to nearest 

Example #3 

• Situation: 

– B is rounded up 

– B has no overlapping segments below it 

– Therefore, round down B 

B 

U 

Before rounding After rounding to nearest After rounding down B and 
the overlapping segments below 
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Collision Resolution Step 2 

• If Step 1 fails, round up segment U 

– U must currently be rounded down 

 

Example 

• Situation: 

– B cannot be rounded down (i.e., step 1 failed) 

– Therefore, round up U instead 

B 

U 

Before rounding After rounding to nearest After rounding up U 
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Collision Resolution Step 3 

• If Step 2 fails, align segment U with segment B 

– Causes the two segments to be merged 

– U and B cannot be visually distinguished anyways 

Example 

• Situation: 

– B cannot be rounded down (i.e., step 1 failed) 

– U cannot be rounded up (i.e., step 2 failed) 

– Therefore, merge B and U to the same grid point 

B 

U 

Before rounding After rounding to nearest After merging 
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Step 4: Interpolation 

• Interpolate non-segment points. For each point: 

– Find nearest segment S1 that lies above the point 

– Find nearest segment S2 that lies below the point 

– Interpolate between S1 and S2 to find new coordinates 

Example 

• Situation: 

– Point lies between two segments 

– Final position is determined by interpolation 

Before rounding After rounding to nearest After rounding B down 
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Input Stroke Skeleton (not grid fit) 

 

Horizontal and Vertical Segments 
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After rounding to nearest grid points 

After rounding to nearest grid points 

Colliding 
segments 



43 

 

After resolving collisions 

Demos 
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Performance 

• Measurement system: 

– IBM T60 laptop 

– Intel Core Duo T2500 2.0 GHz 

 

• Results: 

– Outlines: 90,000 – 110,000 glyphs/sec 

– Strokes: 190,000 – 230,000 glyphs/sec 

 

• Fast enough for on-the-fly hinting at render time 

Summary 

• Multiple alignment zones: 

– Grid fitting support for CJK 

– Supports both outlines and strokes 

– Feature detection and grid fitting on-the-fly at runtime 

– Minimal footprint (does not require font-specific hints) 

– Included in Saffron 3.1 (to be released March 1, 2007) 
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API Support 

• API is not finalized 

• Current thoughts: 

– Fully automatic 

– One Boolean in API to turn multiple alignment zones on/off 

– Application is responsible for limiting use to CJK glyphs 

Working Together 

• Items we can share with you: 

– Saffron 3.1 pre-release library with MAZ support 

– SaffronViewer with MAZ support 

– SaffronCSMTuner with MAZ support 


