
1 

Saffron 3.1 
Multiple Alignment Zones 

January 26, 2007 

Alignment Zones 

• Saffron 3.0 and earlier versions: 

– Grid fitting for Latin, Arabic, Devanagari, Hebrew, Thai 

– No grid fitting support for CJK 



2 

Multiple Alignment Zones 

• Saffron 3.1 adds grid fitting support for CJK 

– Supports both outlines and strokes 

– Completely automatic 

Comparison 

• Standard Alignment Zones 

– Detect alignment zones in a preprocess 

– Use alignment zones to grid fit at runtime 

– Used for Latin, Arabic, Devanagari, Hebrew, Thai 

 

• Multiple Alignment Zones 

– No preprocess 

– Detection and grid fitting are performed on-the-fly at runtime 

– Used only for CJK 

 



3 

Comparison (cont.) 

• Standard Alignment Zones 

– Ignores traditional hints embedded in typefaces 

– Requires 64 bits per glyph to store alignment zone data 

 

• Multiple Alignment Zones 

– Ignores traditional hints embedded in typefaces 

– Requires no additional storage (no preprocessing step) 

 

• Small footprint in both cases 

 

 

Outlines and Strokes 

• Different algorithms for outlines and strokes 



4 

Outlines and Strokes 

• Algorithm similarities: 

– Detect and align horizontal and vertical features 

– Grid fit horizontal and vertical features independently 

– Interpolate non-aligned features 

– No regularization 

 

• Recall: grid fitting is performed on-the-fly 

– Process includes both feature detection and alignment 

– Keep operations simple for efficiency 

Outline Algorithm Overview 

• Strategies: 

– Grid fit horizontal and vertical features independently 

– Grid fit independently in groups called “radicals” 

– Align coordinates to half-integers 

– Preserve original bar and stem widths (with some exceptions) 

 



5 

Outline Algorithm Inputs 

• Any outline-based CJK glyph 

– Raw unhinted coordinates 

Points and Contours 

 

72 points, 5 contours 



6 

Outline Algorithm Parts 

• Two parts, both performed at runtime: 

– Feature detection: steps 1 through 4 

– Grid fitting: step 5 

Step 1: Make Radicals 

• Organize contours into groups called “radicals” 

3 contours 

1 contour 

1 contour 



7 

Step 1: Make Radicals 

• Organize contours into groups called “radicals” 

– Each radical is a group of related glyph components 

– No connection to Chinese “radicals” 

– Grid fitting is done separately for each radical 

Step 1: Make Radicals 

• Definitions: 

– A contour C has parent P if P is the contour with the smallest 
bounding box that contains C’s bounding box. If no such P 
exists, then C has no parent. 

– Contours with no parents are called root contours 

– All other contours are called internal contours 

 



8 

Example 

Example 



9 

Example 

internal contours 

parent contour 

bounding boxes 

Example 

internal contours 

root contour 

root contour 

root contour 



10 

Step 1: Make Radicals 

• Definition: 

– A radical is a set of contours: a single root contour R and all 
internal contours whose root ancestor is R 

Example 

internal contours 

root contour 

root contour 

root contour 



11 

Example 

radical 
(3 contours) 

radical 
(1 contour) 

radical 
(1 contour) 

Radical Independence 

• Each radical is grid fit independently 

– Allows features (bars, stems) to be detected more accurately 

– More efficient 

 

• Descriptions on following slides are per-radical 

– i.e., apply the following steps for each radical 



12 

Step 2: Find Simple Segments 

• Definitions: 

– A vertical simple segment has two adjacent points with equal x 
values 

– A horizontal simple segment has two adjacent points with 
equal y values 

 

• In practice: 

– Consider two values within epsilon to be equal 

Example 

 



13 

Example 

 

Example 



14 

Step 3: Merge Simple Segments 

• Rules for merging simple segments: 

– aligned (e.g., same y coordinate for horizontal segments) 

– same orientation (e.g., left-to-right) 

Example 



15 

Example 

Step 4: Create Pairs 

• A segment pair consists of two merged segments 

• Requirements: 

– sufficient overlap 

– not too wide 

– segments have opposite orientations 

• Multiple pair configurations possible 

– optimize for configuration with thinnest pairs 

– not all segments will be paired 

 



16 

Example 

Example 



17 

Visual Review of Part 1 

 

Visual Review of Part 1 



18 

Visual Review of Part 1 

Visual Review of Part 1 

 



19 

Visual Review of Part 1 

Visual Review of Part 1 



20 

Visual Review of Part 1 

Visual Review of Part 1 



21 

Step 5: Grid Fit 

• Perform grid fitting in the following order: 

1. Segment pairs 

2. Unpaired segments 

3. All other points 

Segment Pairs 

• Rules: 

– Snap bottom segment to the nearest grid point 

– Determine top segment based on adjusted pair width 

 

• Competing goals: 

– Clarity (edge contrast) 

– Consistency (perceptually uniform stroke weights) 

 

• Should we round or preserve pair widths? 



22 

Rounding vs. Preserving 

Preserve original pair widths 
(one edge sharp, one edge fuzzy) 

Round pair widths to nearest integer 
(both edges sharp) 

Rounding vs. Preserving 

• Observations on rounding: 

– Optimizes clarity 

– Disastrous at small PPEMs (e.g., 14, 20, 24) 

– Acceptable at intermediate PPEMs (e.g., 36, 48, 60) 

– Superior at large PPEMs (about 80 and above) 

 

• Observations on preserving: 

– Optimizes consistency 

– Features become too thin at small PPEMs (e.g., 14, 20, 24) 



23 

Adjusted Pair Width 

• Rounding vs. preserving: 

– Preserve original pair widths at small and intermediate PPEMs 

– Round pair widths at large PPEMs (80 and above) 

 

• Small pair widths: 

– Force pair widths to be at least 0.5 pixels 

– Boost pair widths that lie between 0.5 and 1.0 pixels 

– Boosting is based on PPEM (between 14 and 30 PPEMs) 

– Good balance between clarity and consistency 

Example 



24 

Example 

Example 



25 

Example 

Example 



26 

Unpaired Segments 

• Snap unpaired segments to the nearest grid point 

Example 



27 

Example 

Remaining Points 

• Interpolate remaining points using anchors 

• Anchor points are: 

– points that have already been grid fit 

– local minima or maxima (i.e., local extrema) 



28 

Example 

 

Example 

 



29 

Demos 

 

Stroke Algorithm Overview 

• Strategies: 

– Grid fit horizontal and vertical features independently 

– Round stroke widths to the nearest integer (at least 1 pixel) 

– Maximize clarity by placing features at least 2 pixels apart 

– Do not group into radicals 



30 

Stroke Skeletons 

• Terminology: stroke skeletons and stroke width 

stroke skeleton 

stroke width 

Input Stroke Skeleton (not grid fit) 



31 

 

Horizontal and Vertical Segments 

After rounding to nearest grid points 



32 

After rounding to nearest grid points 

Colliding 
segments 

 

After resolving collisions 



33 

Rounded Stroke Width 

• Stroke width specified as fraction of em box 

– Typically either 3% or 5% 

 

• Round the stroke width to the nearest integer 

– Must be at least 1 pixel 

– If even, align skeletons to half-integers (0.5, 1.5, 2.5, ...) 

– If odd, align skeletons to integers (0, 1, 2, ...) 

Step 1: Find Segments 

• Definitions: 

– A vertical segment has two adjacent points with equal x values 

– A horizontal segment has two adjacent points with equal y 
values 

 

• In practice: 

– Consider two values within epsilon to be equal 

 



34 

Step 2: Grid Fit Segments 

• Round each segment to the nearest grid point 

Before rounding After rounding 

Step 3: Avoid Collisions 

• Segments collide if they are 1 pixel apart 

• Colliding segments appear as one thick segment! 

Before rounding After rounding 

1 pixel: collision 



35 

Step 3: Avoid Collisions 

• Try to space segments at least 2 pixels apart 

• Collisions are resolved using three rules: 

1. Try to round down the bottom segment(s) 

2. Try to round up the upper segment 

3. Round bottom and upper segments to the same grid point 

Collision Resolution Details 

• Consider two segments B and U that collide 

– B is the bottom segment 

– U is the upper segment 

Before rounding After rounding 

1 pixel: collision 

B 

U 



36 

Collision Resolution Step 1 

• Try to round down B 

– B must currently be rounded up 

– Rounding down must not cause B to collide with any 
overlapping segments below it 

– Recursively round down all overlapping segments below B if 
necessary 

Example #1 

• Situation: 

– B is rounded up 

– B has no overlapping segments below it 

– Therefore, round down B 

B 

U 

Before rounding After rounding to nearest After rounding B down 



37 

Example #2 

• Situation: 

– B is already rounded down 

– Therefore, cannot resolve collisions by rounding down B 

B 

U 

Before rounding After rounding to nearest 

Example #3 

• Situation: 

– B is rounded up 

– B has no overlapping segments below it 

– Therefore, round down B 

B 

U 

Before rounding After rounding to nearest After rounding down B and 
the overlapping segments below 



38 

Collision Resolution Step 2 

• If Step 1 fails, round up segment U 

– U must currently be rounded down 

 

Example 

• Situation: 

– B cannot be rounded down (i.e., step 1 failed) 

– Therefore, round up U instead 

B 

U 

Before rounding After rounding to nearest After rounding up U 



39 

Collision Resolution Step 3 

• If Step 2 fails, align segment U with segment B 

– Causes the two segments to be merged 

– U and B cannot be visually distinguished anyways 

Example 

• Situation: 

– B cannot be rounded down (i.e., step 1 failed) 

– U cannot be rounded up (i.e., step 2 failed) 

– Therefore, merge B and U to the same grid point 

B 

U 

Before rounding After rounding to nearest After merging 



40 

Step 4: Interpolation 

• Interpolate non-segment points. For each point: 

– Find nearest segment S1 that lies above the point 

– Find nearest segment S2 that lies below the point 

– Interpolate between S1 and S2 to find new coordinates 

Example 

• Situation: 

– Point lies between two segments 

– Final position is determined by interpolation 

Before rounding After rounding to nearest After rounding B down 



41 

Input Stroke Skeleton (not grid fit) 

 

Horizontal and Vertical Segments 



42 

After rounding to nearest grid points 

After rounding to nearest grid points 

Colliding 
segments 



43 

 

After resolving collisions 

Demos 

 



44 

Performance 

• Measurement system: 

– IBM T60 laptop 

– Intel Core Duo T2500 2.0 GHz 

 

• Results: 

– Outlines: 90,000 – 110,000 glyphs/sec 

– Strokes: 190,000 – 230,000 glyphs/sec 

 

• Fast enough for on-the-fly hinting at render time 

Summary 

• Multiple alignment zones: 

– Grid fitting support for CJK 

– Supports both outlines and strokes 

– Feature detection and grid fitting on-the-fly at runtime 

– Minimal footprint (does not require font-specific hints) 

– Included in Saffron 3.1 (to be released March 1, 2007) 



45 

API Support 

• API is not finalized 

• Current thoughts: 

– Fully automatic 

– One Boolean in API to turn multiple alignment zones on/off 

– Application is responsible for limiting use to CJK glyphs 

Working Together 

• Items we can share with you: 

– Saffron 3.1 pre-release library with MAZ support 

– SaffronViewer with MAZ support 

– SaffronCSMTuner with MAZ support 


