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Abstract 
In this paper, we present a new framework for representing,
rendering, editing, and animating character glyphs. Our
framework is based on Adaptively Sampled Distance Fields
(ADFs), which provide an ideal computational substrate for
performing these operations.  We introduce higher-order ADFs
and describe why this succinct representation of 2-dimensional
shapes strikes the optimal balance between memory use and
computational load. We present a new antialiasing method, which
exploits the distance field to achieve superior rendering quality for
both static and animated type. We describe how perceptual rules
used by professional type designers to create hand-tuned glyphs
can be automatically applied during rendering in this framework,
thus mitigating the labor-intensive process of manual hinting. For
designing fonts within our framework, we provide an editor with a
seamless interface between curve-based, stroke-based, and
component-based design paradigms. Finally, we show how the
distance field can be exploited to simulate interactions and
behaviors that are difficult to compute directly from outline-based
representations, thereby enabling creative design with animated
type, some examples of which are provided. 

 
Keywords: fonts, rasterization, antialiasing, hinting, grid fitting,
distance fields. 

 
1 Introduction 
Today’s industry standards for representing and rendering type
are based on a vast history and legacy. These standards are well
established and pervasive. However, two important trends in
typography reveal some inherent limitations of current font
representations, providing the impetus for change.  

The first trend is the increasing emphasis of reading text on-
screen due to the dominant role of computers in the office, the rise
in popularity of Internet browsing at home, and the proliferation
of PDAs and other hand-held electronic devices. These displays
typically have a resolution of 72-100 dots per inch, which is
significantly lower than the resolution of printing devices and
unlikely to increase substantially in the near future. This low-
resolution mandates special treatment when rasterizing type to
ensure reading comfort and legibility, as evidenced by the
resources that companies such as Microsoft and Bitstream have
invested in their respective ClearType and Font Fusion
technologies [Microsoft 2002; Thomas 2002].  

The second trend is the use of kinetic typography (which
requires animated type) in advertising, the web, and design [Lee
et al. 2002; Small 1985; Wong 1995; Cho 1999]. Kinetic
typography is used to convey emotion, to add interest, and to
visually direct the viewer’s attention. The importance of kinetic
typography is demonstrated by its heavy use in television
advertising and by the popularity on the web of Macromedia’s
Flash, which has over 400 million client seats [Macromedia
2003b]. 

Unfortunately, traditional outline-based fonts have limitations
in both of these areas. Rendering type on a low-resolution display
requires careful treatment in order to balance the needs of good
contrast for legibility and reduced spatial and/or temporal aliasing
for reading comfort. Outline-based fonts are typically hinted to

provide instructions to the rendering engine for optimal rendering.
Font hinting is labor intensive and expensive – developing a well-
hinted typeface for Japanese or Chinese fonts (which can have
10,000+ character glyphs) can take years. In addition, because the
focus of hinting is on improving the rendering quality of body
type, these hints tend to be ineffective for type placed along
arbitrary paths and for animated type. Furthermore, although high
quality filtering can be used to antialias grayscale type in static
documents that have a limited number of font sizes and typefaces,
the use of filtering in animated type is typically limited by real-
time rendering requirements [Ruehle and Halford 1999]. 

Here we introduce the use of Adaptively Sampled Distance 
Fields (ADFs) [Frisken et al. 2000] as a representation for type. 
The technical contributions of this paper include: 

 
• A higher order interpolant that replaces the bi-linear 

interpolant of [Frisken et al. 2000; Perry and Frisken 2001] 
thereby reducing 2D ADF cell counts significantly and 
improving the distance field away from the edge of the glyph. 
The reduced cell counts allow the glyphs required for a 
typical Flash animation to fit in the on-chip cache of modern 
CPUs during processing; the improved field enables 
operations such as efficient collision detection for dynamic 
simulation of animated type. 

• Methods for compressing ADFs that allow us to represent 
fonts with memory requirements comparable to hinted 
outline-based fonts and significantly smaller than bitmap 
fonts 

• Two algorithms for rendering fonts with high quality spatial 
and temporal antialiasing that are faster and better than 
existing filtering methods, and which approach or surpass the 
quality of highly tuned glyphs rendered by Adobe Illustrator’s 
proprietary font engine. The first algorithm uses a single 
sample per pixel while the second uses adaptive 
supersampling that is guided by the ADF data structure which 
provides a map of local variance in the distance field. Two 
implementations are described for each algorithm, a simple 

Figure 1. Pixel patterns generated by rasterizing the outline of an 18 point Palatino
‘u’ at 72 dpi. Left: a single sample per pixel exhibits jagged edges and dropout, both
forms of aliasing. Center: a slight translation of the glyph results in a significantly
different pixel pattern, the cause of temporal aliasing (i.e., flickering outlines and
crawling jaggies) in animated type. Taking more samples per pixel reduces these
artifacts but many samples (16+) are required for acceptable results. Right: the
distance field of the ‘u’, where the signed distance from the outline is represented by
image intensity (black is outside, white is inside). The distance field enables better
antialiasing than its outline because sampled distances indicate the proximity of the
outline even when they fall outside the shape. A single sample can provide a good
estimate of how much of the glyph lies inside a filter footprint centered at each pixel.
Furthermore, because the distance field is smooth, sampled distances change slowly
as the glyph moves, reducing temporal aliasing. 
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scanline-based method and a cell-based method amenable to 
hardware. 

• Two methods showing how ADFs can be used during 
rendering to automatically apply the perceptual hinting rules 
described in [Hersch et al. 1995] without requiring laborious 
manual hinting 

• A system for designing fonts that allows type designers to 
move seamlessly between curve-based, stroke-based, and 
component-based design paradigms. The system includes an 
efficient new method for converting ADFs to Bezier curves as 
well as methods based on prior art for converting outlines and 
strokes to ADFs and for combining separately designed font 
components (such as stems and rounds) using constructive 
solid geometry (CSG). The system also provides an automatic 
method for generating ADFs from existing hand-drawn fonts 
and high-resolution digital masters. 
 

Finally, we show how ADFs provide a computational substrate
for simulating interactions between glyphs and for creating
various effects that are difficult or inefficient to perform directly
with outline-based representations. In particular, ADFs can be
used to perform fast collision detection and impact force
computation, soft-body deformation using implicit blends, and a
wealth of effects available via level-set modeling (e.g., morphing,
melting, smoothing, and fluid dynamics simulation). 

 
2 Background 
A typical Latin font family, such as Times New Roman or Arial,
consists of a set of fonts (e.g., regular, italic, bold, and bold italic).
Each font consists of a set of individual character shapes known
as glyphs. There are a number of different ways to represent fonts,
including bitmaps, outlines (e.g., Type 1 [Adobe Systems, Inc.
1990] and TrueType [Apple Computer, Inc. 1990]) and procedural
fonts (e.g., Knuth’s Metafont), with outlines being predominant.
Hersch [1993] and Knuth [1979] contain comprehensive reviews
of the history and science of fonts. 

In this paper, we refer to two classes of typesize. Body type is
type that is rendered at relatively small point sizes (e.g., 12 pt) and
is used in the body of a document as in this paragraph.  Body type
requires high quality rendering for legibility and reading comfort.
Size, typeface, and baseline orientation (e.g., horizontal) rarely
change within a single document. Display type is type that is
rendered at relatively large point sizes (e.g., 36 pt) and is used for
titles, headlines, and in design and advertising to set a mood and
to focus our attention. In contrast to body type, the emphasis in
display type is on beauty (i.e., the lack of spatial and temporal
aliasing) rather than legibility (where contrast may be more
important than antialiasing). It is crucial that a framework for type
be able to handle both of these classes well. 

Type can be rendered to the display device as bi-level or
grayscale. Some rendering engines use bi-level rendering for very
small type sizes to achieve better contrast but perceptual studies
have shown that well-hinted grayscale fonts are just as legible and
are more highly rated by test subjects [O’Regan et al. 1996]. Hints
are a set of rules or procedures stored with each glyph to specify
how the glyph’s outline should be modified during rendering to
preserve features such as symmetry, stroke weight, and a uniform
appearance across all the glyphs in a typeface [Hersch 1993].
Hinting is a time-consuming manual process; an excellent
discussion of the complexities and difficulties of hinting can be
found in [Zongker et al. 2000]. While there have been attempts to
design automated and semi-automated hinting systems [Hersch
1987; Zongker et al. 2000], the hinting process remains a major
bottleneck in the design of new fonts and in the tuning of existing

fonts for low-resolution display devices. In addition, the
complexity of interpreting hinting rules precludes the use of
hardware for font rendering. The lack of hardware support forces
compromises to be made during software rasterization (such as
the use of fewer samples per pixel), particularly when animating
type in real time [Ruehle and Halford 1999]. 

Grayscale font rendering typically involves some form of
antialiasing, a process which smoothes out the jagged edges that
appear in bi-level fonts. Although many font rendering engines
are proprietary, most use supersampling (after grid fitting and
hinting) with 4 or 16 samples per pixel followed by down-
sampling via a 2x2 or 4x4 box filter respectively [Hersch et al.
1995; Ruehle and Halford 1999; Betrisey et al. 2000; Microsoft
2002]. This fairly rudimentary filtering is justified by the need for
rendering speed. However, even this approach is too slow for real-
time rendering (as required for animated type) and, as we will
show, the rendered glyphs still suffer from spatial and temporal
aliasing. In contrast, as will be demonstrated in Section 4, ADFs
provide better antialiasing with only a single sample per pixel and
very high quality antialiasing with only a few samples per pixel. 

 
3 Representation 
3.1 Background 
For this paper, we define a 2-dimensional signed distance field D
representing a (closed) 2-dimensional shape S (such as a glyph) as
a mapping D:ℜ2 → ℜ for all p ∈ ℜ2 such that D(p) = sign(p) ⋅
min{||p – q||: for all points q on the zero-valued iso-surface (i.e.,
edge) of S}, sign(p) = {-1 if p is outside S, +1 if p is inside S},
and || ⋅ ||  is the Euclidean norm. Less formally, the distance field
of a glyph simply measures the minimum distance from any point
p to the edge of the glyph, where the sign of this distance is
negative if p is outside the glyph and positive if p is inside the
glyph. 

Figure 1 gives some intuition as to why the glyph’s distance
field provides better results than the glyph’s outline for sample-
based rendering. On the left, a single sample per pixel can miss
the glyph even when the sample point is arbitrarily close to the
outline. The rendered glyph has jagged edges and dropout, both
forms of spatial aliasing. In the center, a slight translation of the
glyph up and to the right results in a significant change in the
sample values, the cause of temporal aliasing in animated type
(i.e., flickering outlines and jagged edges that seem to crawl
during motion). Taking more samples per pixel reduces these
effects but many samples may be required for acceptable results
[Mitchell 1996]. In contrast, on the right, sampled distance values
indicate the proximity of the glyph even when they fall outside the
shape. In fact, a single sample value can be used to estimate how
much of the glyph lies inside a filter footprint centered at each
pixel. Furthermore, because the distance field varies smoothly
(i.e., it is C0 continuous), sampled values change slowly as the
glyph moves, reducing temporal aliasing artifacts. 

Distance fields have other advantages. Because they are an
implicit representation, they share the benefits of implicit
functions [Bloomenthal 1997]. In particular, distance fields enable
an intuitive interface for designing fonts: individual components
of glyphs such as stems, bars, rounds, and serifs can be designed
separately and then trivially blended together to compose different
glyphs of the same typeface. Section 5 describes a system for
editing glyphs. Distance fields also have much to offer in the area
of kinetic typography since they provide information important
for simulating interactions between objects. [Frisken and Perry
2002] summarizes the many contributions that distance fields
have made to computer graphics and related fields. Some such
uses of the distance field are described in Section 6. 
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 Figure 2. Times New Roman ‘a’ and ‘D’ represented as 3-color quadtrees (left) and
bi-quadratic ADFs (right). The 3-color quadtrees for the ‘a’ and the ‘D’ consist of
17,393 and 20,813 cells respectively, while their corresponding ADF counterparts
consist of 457 and 399 cells. Bi-quadratic ADFs typically require 5-20 times fewer
cells than the bi-linear representation of [Frisken et al. 2000]. 

ADFs are an efficient digital representation of distance fields
that use detail-directed sampling to reduce the number of samples
required to represent the field, store the sampled distances in a
spatial hierarchy for efficient processing, and provide a method
for reconstructing the field from the sampled values. The use of
detail-directed sampling (which samples the distance field
according to its local variance) significantly reduces memory
requirements over both regularly sampled distance fields (which
sample at a uniform rate throughout the field) and 3-color
quadtrees (which always sample at a maximum rate near edges). 

The efficiency of ADFs is illustrated in Figure 2, which
compares the size of a 3-color quadtree for a Times Roman ‘a’
and ‘D’ with the size of a new bi-quadratic ADF (presented in
Section 3.2) of the same accuracy. Both quadtrees have a
resolution equivalent to a 512x512 image of distance values.  

3.2 Bi-Quadratic Reconstruction Method 
Frisken et al. [2000] use a quadtree for the ADF spatial hierarchy
and reconstruct distances and gradients inside each cell from the 4
distances sampled at the cell’s corners via bi-linear interpolation.
They suggest that “higher order reconstruction methods … might
be employed to further increase compression, but the numbers
already suggest a point of diminishing return for the extra effort”.
However, we have found that bi-linear ADFs are inadequate for
the framework proposed in this paper. In particular, they require
too much memory, are too inefficient to process, and the quality
of the reconstructed field in non-edge cells is insufficient for
operations such as dynamic simulation. The “bounded-surface”
method of Perry and Frisken [2001] can be used to force further
subdivision in non-edge cells by requiring that non-edge cells
within a bounded distance from the surface (i.e., edge) pass an
error predicate test. Although this reduces the error in the distance
field within this bounded region, we have found that for bi-linear
ADFs this method results in an unacceptable increase in the

number of cells.  
To address these limitations, we replace the bi-linear

reconstruction method suggested in [Frisken et al. 2000] with a bi-
quadratic reconstruction method. Bi-quadratic ADFs of typical
glyphs tend to require 5-20 times fewer cells than bi-linear ADFs,
where the higher reduction occurs when we require an accurate
distance field in non-edge cells for operations such as dynamic
simulation. This significant memory reduction allows the glyphs
required for a typical Flash animation to fit in the on-chip cache
of modern CPUs. This has a dramatic effect on times for
processing glyphs because system memory access is essentially
eliminated, easily compensating for the additional computation
required by the higher order reconstruction method. 

Figure 3 illustrates a bi-quadratic ADF cell. There are a
variety of bi-quadratic reconstruction methods available: we use a
bivariate Lagrange interpolating polynomial [Lancaster and
Salkauskas 1990] which guarantees C0 continuity along shared
edges of neighboring cells of identical size. As with the bi-linear
method, continuity of the distance field between neighboring cells
of different size is maintained to a specified tolerance using an
error predicate that controls cell subdivision during ADF
generation [Perry and Frisken 2001]. The distance and gradient at
a point (x, y), where x and y are expressed in cell coordinates (i.e.,
(x, y) ∈ [0,1] x [0,1]), are computed as follows: 

    
Let xv1 = x – 0.5 and xv2 = x – 1 
Let yv1 = y – 0.5 and yv2 = y – 1 
Let bx1  = 2xv1 ⋅ xv2, bx2 = – 4x ⋅ xv2, and bx3 =  2x ⋅ xv1 
Let by1 = 2yv1 ⋅ yv2, by2 = – 4y ⋅ yv2, and by3 =  2y ⋅ yv1 
 
 dist   =  by1 ⋅ (bx1 ⋅ d1 + bx2 ⋅ d2 + bx3 ⋅ d3) +  

 by2 ⋅ (bx1 ⋅ d4 + bx2 ⋅ d5 + bx3 ⋅ d6) +  
 by3 ⋅ (bx1 ⋅ d7 + bx2 ⋅ d8 + bx3 ⋅ d9) (1)

 
gradx =  – [by1 ⋅ (4x  ⋅ (d1 – 2d2 + d3) – 3d1 – d3 + 4d2) + 
  by2 ⋅ (4x  ⋅ (d4 – 2d5 + d6) – 3d4 – d6 + 4d5) + 

  by3 ⋅ (4x  ⋅ (d7 – 2d8 + d9) – 3d7 – d9 + 4d8)] (2)
 
grady = – [(4y – 3) ⋅ (bx1 ⋅ d1 + bx2 ⋅ d2 + bx3 ⋅ d3) – 

  (8y – 4) ⋅ (bx1 ⋅ d4 + bx2 ⋅ d5 + bx3 ⋅ d6) + 
  (4y – 1) ⋅ (bx1 ⋅ d7 + bx2 ⋅ d8 + bx3 ⋅ d9)]. (3)
 
Reconstructing a distance requires ~35 floating-point

operations (flops); reconstructing a gradient requires ~70 flops.
Times reported in this paper do not exploit special CPU
instructions such as the Streaming SIMD Extensions of Pentium
class processors. However, because the reconstruction methods do
not contain branches and the glyphs reside entirely in the on-chip
cache, we can further optimize these reconstruction methods to
take advantage of both special CPU instructions and the deep
instruction pipelines of modern CPUs to make these methods
extremely efficient. 

3.3 Compression for Transmission and Storage 
3.3.1 Linear Quadtrees 
The spatial hierarchy (i.e., tree structure) of the ADF quadtree is

Figure 3. Each cell in a bi-quadratic ADF contains 9
distance values. The distance and gradient at (x,y) are
reconstructed from these 9 values according to
equations 1 – 3. 

d1 d2 d3

d4 d5 d6

d7 d8 d9

(x, y)
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required for some processing (e.g., collision detection) but is
unnecessary for others (e.g., cell-based rendering as described in
Section 4.4). To provide better compression for transmission and
storage of ADF glyphs, we use a linear quadtree structure [Samet
1989], storing the ADF as a list of leaf cells. The tree structure
can be regenerated from these leaf cells at run-time as needed. 

Each leaf cell in the linear ADF quadtree consists of the x and
y positions (2 bytes each), the cell level (1 byte), the distance
value at the cell center (2 bytes), and eight distance offsets from
the center distance value (1 byte each), for a total of 15 bytes per
cell. Each distance offset is computed by subtracting its
corresponding sample distance value from the center distance
value, scaling by the cell size to reduce quantization error, and
truncating to 8 bits. The 2 bytes per position and the 1 byte for
cell level can represent ADFs up to 216 x 216 in resolution, which
are more than adequate for representing glyphs to be rendered at
screen resolutions. Our tests have shown that such glyphs can be
accurately represented by 16-bit distance values. Encoding eight
of the distance values as 8-bit distance offsets provides substantial
savings over storing each of these values in 2 bytes. Although, in
theory, this may lead to some error in the distance field of large
cells, we have not observed any visual degradation. 

Typefaces require 500 – 1000 leaf cells per glyph for high-
resolution ADFs. Applying lossless entropy encoding (e.g.,
Winzip) typically achieves 35-50% further compression.
Consequently, an entire typeface of high-resolution ADFs can be
represented in 300-500 Kbytes. If only body type is required or
the target resolution is very coarse, as for cell phones, lower
resolution ADFs can be used that require ¼ to ½ as many cells.
These sizes are significantly smaller than grayscale bitmap fonts
(which require ~0.5Mbytes per typeface for each point size) and
are comparable in size to well-hinted outline-based fonts. Sizes
for TrueType fonts range from 10’s of Kbytes to 10’s of Mbytes
depending on the number of glyphs and the amount and method of
hinting. Arial and Times New Roman, two well-hinted fonts from
the Monotype Corporation, require 266 Kbytes and 316 Kbytes
respectively. 

 
3.3.2 Run-time Generation from Outlines 
ADFs can be generated quickly from existing outline descriptions
(e.g., Bezier curves) using the tiled generator described in [Perry
and Frisken 2001]. The minimum distance to a glyph’s outline is
computed efficiently using Bezier clipping [Sederberg and Nishita
1991]. Generation requires 0.04-0.08 seconds per glyph on a
2GHz Pentium IV processor and an entire typeface can be
generated in about 4 seconds. Because conventional hints are not
needed, the outlines required to generate ADFs are substantially
smaller than their corresponding hinted counterparts. Therefore,
rather than storing ADFs, we can store these minimal outlines and
generate ADF glyphs from these outlines on demand. The reduced
size of these minimal outlines is important for devices with
limited memory and for applications such as Flash which transmit
glyphs across a bandwidth-limited network. 

 
3.3.3 Compression via Component-Based Fonts 
Bitstream achieves significant compression for Chinese, Japanese,
and Korean fonts (which can consist of 10,000+ glyphs) by using
a component-based representation in Font Fusion [Thomas 2002].
This representation decomposes glyphs into common strokes and
radicals (i.e., complex shapes common to multiple glyphs), stores
them in a font library, and then recombines them in the rendering
engine. We note here that because distance fields are an implicit
representation, ADFs can be easily combined using blending or
CSG operations and thus are well suited to compression via this

component-based approach.  
 
4 Font Rendering 
4.1 Background 
4.1.1 Font Rendering 
In today’s font rendering engines, fonts are predominantly
represented as outlines, which are scaled on the fly to match the
desired output size. While most high-resolution printers use bi-
level rendering, modern display devices more commonly use
grayscale rendering or a combination of grayscale and bi-level
rendering at small point sizes (where the increased contrast of bi-
level rendering is thought to improve legibility). A common
approach for rasterizing grayscale glyphs involves scaling and
hinting their outlines, scan converting the hinted outlines to a
high-resolution image (typically 4 or 16 times larger than the
desired resolution), and then down-sampling the high-resolution
image by applying a filtering method (typically a box filter) to
produce the final grayscale image [Hersch 1993].  

For body type, individual glyphs can be rasterized once and
stored in a cache as a grayscale bitmap for reuse. The need for
sub-pixel placement of a glyph may require several versions of
each glyph to be rasterized. Use of a cache for body type permits
higher quality rendering especially since users will tolerate short
delays (e.g., ½ second) during tasks such as paging through an
Adobe Acrobat PDF document. However, type rendered on
arbitrary paths and animated type are often rendered on the fly.
Real-time rendering requirements force the use of lower
resolution filtering (typically 4 samples per pixel and box filtering
[Ruehle and Halford 1999]) which can cause static and temporal
aliasing. To deal with complaints about the quality of their
antialiased text, Macromedia’s Flash provides a work-around for
body type [Macromedia 2003a] that uses hinted device fonts (e.g.,
TrueType fonts residing on the client machine) instead of Flash’s
antialiasing method [Ruehle and Halford 1999]. Note, however,
that Flash places severe constraints on how device fonts can be
used in order to maintain real-time frame rates (e.g., device fonts
cannot be scaled or rotated). 

Recent work at Microsoft on ClearType has led to special
treatment for LCD color displays that contain a repeating pattern
of addressable colored sub-pixels. Platt [2000] presents a set of
perceptually optimal filters for each color component. However,
in practice, these optimal filters are implemented as a set of three
displaced box filters (one for each color) [Betrisey et al. 2000].
We do not exploit this characteristic of LCD displays in this
framework. However, the ADF antialiasing method described
below could replace the box filters to provide better emulation of
the optimal filters with fewer samples per pixel. This area of
investigation is left as future work. 

 
4.1.2 Antialiasing 
Understanding the artifacts in rendered fonts requires an
understanding of antialiasing. Here we provide an overview from
the unique perspective of font rendering and refer readers to some
of the many excellent sources for a more in-depth treatment
[Wolberg 1994; Akenine-Moller and Haines 2002; Joy et al.
1998]. Because pixels are discrete, rendering to a display device is
inherently a sampling process, with the sampling rate imposed by
the display resolution. Unless the sampling rate is at least twice
the highest frequency in the source signal, the sampled signal will
exhibit aliasing. Edges (e.g., glyph outlines) have infinite
frequency components and hence cannot be represented exactly
by sampled data. Inadequate sampling of edges results in jaggies,
which tend to crawl along the sampled edges in moving images. If
the source signal also contains a spatial pattern (e.g., the repeated
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vertical stems of an ‘m’ or the single vertical stem of an ‘i’)
whose frequency components are too high for the sampling rate,
the sampled data can exhibit dropout as depicted in Figure 1,
moiré patterns, and temporal flicker. 

To avoid aliasing, the input signal must be pre-filtered to
remove frequency components above those permitted by the
sampling rate. In general, there are two approaches to pre-
filtering. The first is known as analytic filtering. It applies some
form of spatial averaging to a continuous representation of the
source signal before sampling. Unfortunately, analytic filtering is
often not possible, either because the source data is not provided
as a continuous signal (the normal case for image processing) or
because determining an analytic description of the signal within
the filter footprint is too complex (the case for all but simple
geometric shapes in computer graphics and certainly the case for
spline-based outlines). The second approach is known as discrete
filtering. In this approach, the source signal is sampled at a
(typically) higher rate than the target rate and then a discrete filter
is applied to reduce high frequencies in this supersampled image
before down-sampling it to the target rate. 

This discrete approach is referred to as regular supersampling
in computer graphics. Various discrete filters can be applied
depending on the processing budget, hardware considerations, and
personal preferences for contrast vs. smoothness in the output
image. The box filter typically used to render type simply replaces
a rectangular array of supersampled values with their arithmetic
average and is generally regarded as inferior in the signal
processing community. Whitted [1980] introduced the use of
adaptive supersampling, which focuses available resources for
sampling and filtering on areas of the image with higher local
frequency components. Lee et al. [1985] showed that the optimal
adaptive sampling could be determined from the local variability
in the image. However, Joy et al. [1998] note that “the usefulness
of this technique is limited by the need to estimate the local
variance of the image”. Cook [1986] argued that moiré patterns,
which are introduced by inadequate regular sampling of high
frequency patterns, are particularly objectionable to the human
visual system. He proposed instead the use of stochastic or jittered
sampling in which samples are randomly displaced slightly from
their nominal positions. Jittered sampling tends to replace moiré
pattern aliasing with high frequency noise and has been shown to
be particularly effective in reducing temporal aliasing. As far as
we know, neither adaptive supersampling nor jittered sampling
have been applied to font rendering. 

4.2 Rendering with Distance-Based Antialiasing 
4.2.1 Background 
The infinite frequency components introduced by the glyph edges
are a major contribution to aliasing in font rendering. In contrast,
a glyph’s 2D distance field does not contain such edges (see
Figure 1). Instead, its maximum frequency depends on the spatial
pattern of the glyph itself (e.g., the repeated vertical stems of an
‘m’ or the single vertical stem of an ‘i’). By representing a glyph
by its 2D distance field we are effectively applying an analytic
pre-filter to the glyph, although the distance field is different from
the output of a conventional analytic pre-filter (which provides a
filtering of coverage, i.e., a measure of how much of the filter
footprint is covered by the glyph). 

The use of distance to provide analytic pre-filtering for
antialiasing is not new to computer graphics. Gupta and Sproull
[1981] map distance to intensity in order to antialias thick lines in
a Bresenham-like line drawing algorithm. The mapping relates
distance to coverage by computing the convolution of a thick line

Figure 4. Profile of a linear filter used
for converting ADF distances to
image intensity. Distances are
positive inside the shape and negative
outside the shape. Different cutoff
values (measured in pixels) affect the
edge contrast and stroke weight. 

with a cone filter as a function of distance from the centerline of
the thick line to the center of the filter. Turkowski [1982] also
maps perpendicular point-line distance to intensity. He applies his
method to antialias lines and polygon edges with an efficient
algorithm for computing distances to line segments. More
recently, Jones and Perry [2000], building upon [Max 1990], used
distances measured along line samples to estimate 2D coverage
for polygons in 3D rendering. They note that the ideal line sample
is perpendicular to a polygon’s edge and compensate for non-ideal
line orientation by using multiple line samples. McNamara et al.
[2000] describe a hardware implementation for antialiasing lines
which maps distances to image intensity. Finally, distance filters
(and related cone filters) have been used in volume rendering to
“voxelize” volume models. Sramek and Kaufman [1999] present
an analysis for why distance filters provide ideal pre-filtering for
antialiased volume rendering. 

 
4.2.2 Antialiasing with ADFs 
Given an ADF of a glyph, it is both simple and efficient to apply
distance-based antialiasing during font rendering. The ADF is
rasterized into an image in four steps. For each pixel in the image,
1) the pixel coordinates are transformed into ADF coordinates; 2)
the ADF cell containing the transformed pixel is located using the
comparison-free quadtree traversal methods of [Frisken and Perry
2003]; 3) the distance at the transformed pixel is reconstructed
from the cell’s distance values; and 4) the reconstructed distance
is mapped to pixel intensity.  

The mapping loosely relates the distance value to coverage –
if we assume that the glyph’s outline is a straight line near the
pixel, the mappings from distance to intensity used by Gupta and
others hold. However, because we cannot make this assumption in
general, we have experimented with several different mapping
functions with the characteristics described in [Jones and Perry
2000; McNamara et al. 2000], including linear, Gaussian, and
sigmoidal functions. Choice of the best mapping function is
subjective but we prefer the linear mapping illustrated in Figure 4
followed by a contrast enhancement. The results shown here and
on the accompanying webpages use a linear filter with outside and
inside filter cutoff values of (-0.75, 0.75) pixels for display type
and (-0.5, 0.625) pixels for body type. The contrast enhancement
takes the form of a power function intensity_out = intensity_inα,
with α set to 1.1. To accommodate a range of contrast
preferences, α can be tuned by the user as is demonstrated in the
Kanji examples provided on the webpages. 

We have tested this antialiasing method on many different
typefaces at many different point sizes. Some typical results are
shown in Figures 5–7. Additional results for Latin and Kanji type
rendered in font sizes ranging from 8 to 72 points are shown on
the accompanying webpages. (Note: we urge reviewers to view
the results from the webpages on a display device rather than from
this PDF or its printed form.)  

We have compared our method to other filtering methods,
including 4x supersampling with box filtering, 16x supersampling
with a more sophisticated (and computationally expensive)
Gaussian filter, and 16x supersampling with the Mitchell-
Netravali filter [Mitchell and Netravali 1988]. Because the
Mitchell-Netravali filter provides only marginal improvement

distance

intensity

1

outside
cutoff

outside
cutoff
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cutoff

0
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Figure 7. Times New Roman ‘g’ rendered, from left to right, by 16x supersampling
with a Gaussian filter, Adobe Illustrator with hinting and supersampling, and the
unhinted single sample per pixel ADF method of Section 4.2.2. These images have
been pixel replicated 8x. Note the smooth grayscale transitions in the ADF rendering
along the horizontal sections of the descender, resulting in better spatial and temporal
antialiasing. 

Figure 6. Garamond glyphs at display type sizes rendered, from top to bottom, by
16x supersampling with a Gaussian filter, Adobe Illustrator with hinting and
supersampling, and the unhinted single sample per pixel ADF method of Section
4.2.2. These images were digitally captured from the display device and then pixel
replicated 3x. Note the ragged left edges of the vertical stems of the H, P, and J, the
ragged horizontal bar of the H, and the ragged top bars of the P and E for the
supersampled and Adobe Illustrator renderings. The ADF method produces smoother
edges while maintaining good contrast. 

Figure 5. Examples of body type rendering for different typefaces and sizes. In each example 4 rows are rendered, from top to bottom, by 4x supersampling with a box filter, 16x
supersampling with a Gaussian filter, Adobe Illustrator with hinting and supersampling, and the unhinted single sample per pixel ADF method of Section 4.2.2. Top: Helvetica
typeface rendered at 3 sizes, captured from the display screen and pixel replicated 3 times. Bottom: Times New Roman italic typeface at 2 sizes, pixel replicated 5 times. In each
example, note that 4x supersampling with box filtering produces blocky type with jagged edges and non-uniform stroke weights. The 16x Gaussian filtered type has fewer aliasing
artifacts but the text is fuzzy and heavy compared to the hinted Adobe Illustrator type. In contrast, the ADF results are comparable in quality to the hinted Adobe Illustrator results.

Figure 9. Test pattern rendered from left to right by 4x supersampling with a box filter, 16x supersampling with a Gaussian filter, 16x jittered supersampling with a Gaussian filter,
and optimal adaptive ADF supersampling. The filtering methods of the two left images are used most often for antialiasing type. Adaptive ADF supersampling significantly
reduces aliasing artifacts using an average of only 3.6 samples per pixel for this image. The dramatic reduction in temporal aliasing is best seen on the accompanying webpages.  



 

7 – ACM Transactions on Graphics Submission 

 

reduction in temporal aliasing when rendered with adaptive ADF
supersampling. The number of samples required for adaptive ADF
supersampling depends on the spatial structure in the source
signal and the target image size on the display device. The test
pattern (an extreme case) requires an average of 1.2 spp @
515x512, 3.6 spp @ 128x128, and 13 spp for very small images
(8x8). Animated display type requires between 1 and 2.5 samples
per pixel, significantly fewer than the 4–16 samples per pixel
required by the other three methods. 

4.4 Cell-Based Rendering 
The ADF rendering algorithms presented in Sections 4.2 and 4.3
are easily implemented in software using scanline-based
rasterization. Alternatively, ADFs can be rendered cell-by-cell
(i.e., in object order). Cell-based rendering eliminates tree
traversal for locating cells containing the sample points,
eliminates redundant setup for computing distances and gradients
within a single cell, and reduces repeated retrieval (i.e., memory
fetches) of cell data. In addition, because the cells required for
rendering can be represented as a sequential block of fixed sized
(Section 3.3.1), self-contained (i.e., distances and gradients for
points within a cell are computed from the cell’s 9 distance
values) units, a cell-based approach is amenable to hardware. 

For the single sample per pixel ADF rendering method of
Section 4.2, each leaf cell is rasterized. During rasterization
distances are reconstructed at each pixel that falls within the cell
and then mapped to intensity as described in Section 4.2. This
approach is augmented with a special treatment of cells smaller
than the filter radius for adaptive ADF supersampling. Because
small cells occur where there is high variance in the distance field,
distances in pixels near these cells should be pre-filtered before
mapping them to intensity. In the spirit of object-order splatting
[Westover 1990], we maintain a temporary buffer, initialized to
zero, for accumulating the weights and the weighted distances for
each pixel. As each cell is processed, the weighted distances and
accumulated weights are incremented for each pixel that either
lies in the cell or lies within the filter radius of the cell’s center.
After processing all the cells, the weighted distances are
normalized by the accumulated weight for each pixel and then
mapped to pixel intensity. We use the same Gaussian weights and
filter radius as described in Section 4.3. Although this sampling
method acquires different samples than the method of Section 4.3,
the quality of the resulting antialiased images is similar. 

As a final note, cell-based rendering always processes every
leaf cell, regardless of the relative sizes of each cell to the filter
radius. In theory, this provides optimal adaptive supersampling. In
practice, the ADF quadtree can be used as a mipmap [Akenine-
Moller and Haines 2002] to reduce the number of cells processed
for small images. The ADF quadtree structure allows us to replace
small leaf cells with their ancestors, effectively truncating the
quadtree at some cell size. Our tests show that as long as this cell
size is less than or equal to ¼ of the inter-pixel spacing, there is
no visual degradation in the adaptive supersampling results.  

over the Gaussian filter at a significant computational cost, these
results are not shown. We have also compared our results to
hinted, antialiased Adobe Illustrator fonts rendered with Adobe’s
highly tuned proprietary font rendering engine. We chose Adobe
Illustrator as a gold standard over several other applications
(including Microsoft Word, Adobe PhotoShop, and Adobe
Acrobat) because the quality of Illustrator’s font rendering was
noticeably superior. 

Figure 5 compares these rendering methods for body type
sizes. Figures 6–7 present results for display type sizes. For
glyphs, our method provides higher quality with a single sample
per pixel and substantially shorter rendering times (4x–16x faster)
than both supersampling methods. Our unhinted results are
comparable to Adobe’s proprietary rendering for well-hinted fonts
(e.g., Arial and Times New Roman) for body type sizes and
arguably better than their rendering at display type sizes. 

4.3 Optimal Adaptive Supersampling 
We have demonstrated that using the distance field reduces
aliasing due to glyph edges. However, aliasing still occurs when
stem widths or spacing between glyph components are too small
for the display's sampling rate. In such cases, we can apply
adaptive supersampling to further reduce spatial and temporal
aliasing. Once again, ADFs have a significant advantage over
outline-based representations – because ADFs use detail-directed
sampling, regions of the distance field with higher local variance
are represented by smaller leaf cells. Hence, the structure of the
ADF quadtree provides the map of local variance required to
implement Lee’s optimal adaptive sampling, overcoming the
difficulty noted by Joy et al. (see Section 4.1.2). 

For each pixel in the image, the cell containing the pixel is
located (as described in Section 4.2.2) and a set of sampled
distances within a filter radius, r, of the pixel is reconstructed. The
number of samples per pixel (spp) depends on the relative size of
the cell, cellSize, to r. These sampled distances are filtered to
produce a single weighted average for the pixel that is then
mapped to pixel intensity. Various filters and sampling strategies
are possible.  Results presented in this paper were computed using
a general form of the Gaussian [Wolberg 1994], weighting each
distance sample by W-12-3(d/r)2

, where d is the distance from the
sample point to the pixel and W is the sum of the weights used for
that pixel. We have achieved similar results using box filters, cone
filters, and other forms of the Gaussian. The sampling strategy
that we used is illustrated in Figure 8. Samples are placed in
concentric circles about the pixel center for efficient computation
of the weights and weight sums. We use a filter radius of 1.3
times the inter-pixel spacing and sample with 1 spp when cellSize
> r, 5 spp when r/2 < cellSize ≤ r, and 13 spp when cellSize ≤ r/2.
The adaptive method is not very sensitive to the sampling
strategy: Section 4.4 describes another adaptive sampling strategy
with equally good results that places sample points at the centers
of all the cells contained within the filter radius. 

Figure 9 compares screen shots of a demanding test pattern
that has sharp edges and a spatial pattern at the image center with
infinite spatial frequencies. The test pattern was rendered using
adaptive ADF supersampling, 4x supersampling with a box filter,
16x supersampling with a Gaussian filter, and 16x jittered
supersampling with a Gaussian filter. With adaptive ADF
supersampling the edges are less jagged and the moiré pattern at
the center of the image is significantly reduced. The dramatic
improvement in both spatial and temporal aliasing is best
demonstrated by an animation of the test pattern provided on the
accompanying webpages. Display type also exhibits a significant

Figure 8. Sampling patterns used for adaptive supersampling. For each pixel, the cell
containing the pixel is located and its size, cellSize, is determined. If cellSize > r
(where r is the pixel filter radius) one sample is taken (left). If r/2 < cellSize ≤ r, 5
samples are taken (center). If  cellSize ≤ r/2, 13 samples are taken (right). 
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outline and fills it or b) defines a path stroked by a pen nib with
numerous attributes, and 3) component-based design tools, which
allow designers to build basic components such as stems, arcs,
and other recurring shapes and then combine the components to
create glyphs. See [Shamir and Rappoport 1998; Hu and Hersch
2001] for discussions on the relative merits and drawbacks of
these methods. 

We have built upon prior work in 3D sculpting with ADFs
[Perry and Frisken 2001] to create a 2D font editor. This editor
provides: 

 
• Stroke-based design – the 2D counterpart to 3D carving in

[Perry and Frisken 2001]. Stroking can be done interactively
or it can be scripted to emulate programmable design tools. 

• Curve-based design – using Bezier curve manipulation
modeled after Adobe Illustrator combined with methods for
converting outlines to ADFs  (described in Section 3.3.2) and
ADFs to outlines (described below) 

• Component-based design – uses CSG and blending operations
on the implicit distance field, allowing components to be
designed separately and combined either during editing or
during rendering (when using component-based compression
as described in Section 3.3.3) 

• A method for automatically generating ADFs from analog and
digital font masters  

 
Building the editor required several advances over the system

described in [Perry and Frisken 2001]. For component-based
design, we added the ability to efficiently reflect and rotate ADFs
using quadtree manipulation described in [Samet 1989] to model
the symmetries common in glyphs. Additional features include
ADF scaling, translation, and operations to combine multiple
ADFs (e.g., CSG and blending).  

For stroke-based design, we added carving tools with a
rectangular profile to emulate pen nibs. The orientation and width
of the pen nib can change along the stroke to mimic calligraphy.
During the stroke, we generate an ordered list of points along the
stroke’s path and then apply the curve fitting algorithm of
Schneider [1990] to fit a minimum set of G2 continuous curves to

4.5 Automatic Hinting 
Hinting in standard font representations is a time-consuming
manual process in which a type designer (and/or a hinting
specialist) creates a set of instructions for better fitting individual
glyphs to the pixel grid. Good hinting produces glyphs at small
type sizes that are well spaced, have good contrast, and are
uniform in appearance. Hersch et al. [1995] demonstrate that
filtering methods produce fuzzy characters and assign different
contrast profiles to different character parts, thus violating
important rules of type design. According to Hersch et al., these
rules include 1) the need to provide vertical stems with the same
contrast distribution, with the left edge having the sharpest
possible contrast, 2) the need for diagonal bars and thin, rounded
parts of glyphs to have sufficient contrast for transmitting visual
structure to the eye, and 3) the need for serifs to hold together and
provide enough emphasis to be captured by the human eye. For
outline-based fonts, rendering with hints is a three step process: 1)
scaling the glyph’s outlines and aligning them to the pixel grid; 2)
modifying these outlines to control contrast of stems, bars, and
serifs and to increase the thickness of very thin sections and arcs;
and 3) supersampling the modified outlines followed by down-
sampling with filtering. 

Although the unhinted ADF rendering methods described
above compare favorably with existing font rendering methods,
research indicates that perceptual hinting can improve reading
comfort at small type sizes [O’Regan et al. 1996]. Here we report
some preliminary results that show that the ADF distance field
can be exploited to provide automatic hinting. 

The first step in hinting is to scale and align the glyph to the
pixel grid. This can be done automatically from the given (or
derived [Herz and Hersch 1994]) font metrics, i.e., the cap-height,
the x-height, and the position of the baseline. Figure 10 illustrates
the benefits of this simple process on an ADF glyph rendered at a
small point size. After applying this simple form of grid fitting we
can also use the distance field to provide some of the perceptual
hints advocated by Hersch. Examples of two results are shown in
Figures 11 and 12. In Figure 11, the direction of the gradient of
the distance field is used to detect pixels on the left or bottom
edge of a glyph. By darkening these pixels and lightening pixels
on opposite edges, we achieve higher contrast on left and bottom
edges without changing the apparent stroke weight. In Figure 12,
we note that for pixels located on or near thin regions of the
glyph, neighbors on either side of the pixel will have opposite
gradient directions (i.e., their dot products will be negative). By
detecting abrupt changes in gradient directions, we can darken
pixels on these thin regions, providing better contrast for diagonal
stems and thin arcs.  

These are only two examples of how the distance field can be
used to provide perceptual hints automatically without manual
hinting. A full treatment of hinting (including using the distance
field to provide optimal character spacing and uniform stroke
weight) is beyond the scope of this paper and is left as future
work. 

 
5 Creating and Editing Fonts 
There are two basic methods for designing fonts. The first is
manual: glyphs are drawn by hand, digitized, and then outlines are
fit to the digitized bitmaps. The second is by computer, for which
there are three types of tools available: 1) direct visual tools for
curve manipulation, 2) programmable design tools (such as
Metafont) where the shape of a glyph is constructed by executing
the instructions of a procedure which either a) defines a shape’s

Figure 10. Times New Roman ‘H’ rendered from an ADF without (left) and with
(right) alignment of the bottom-left corner of the glyph with the pixel grid. 

Figure 12. Palatino ‘a’ rendered from an ADF without (left) and with (right)
automatic hinting to thicken thin strokes by slightly darkening pixels where the
gradient of the distance field changes abruptly between adjacent pixels. 

Figure 11. Helvetica ‘n’ rendered from an ADF without (left) and with (right)
automatic hinting of left and bottom edges by darkening pixels where the gradient of
the distance field indicates a left or bottom edge and lightening pixels corresponding
to right and top edges to maintain stroke weight. 
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the path (with user-specified accuracy). We then generate two
additional ordered lists of offset points from this path using the
tool width and orientation and fit curves to these offset points to
generate the stroke outlines. The outline curves are placed in a
spatial hierarchy for efficient processing [Johnson and Cohen
1998]. Finally, we generate the 2D ADF from this hierarchy using
the tiled generator described in [Perry and Frisken 2001]. The
minimum distance to the outlines is computed efficiently using
Bezier clipping [Sederberg and Nishita 1991]. On a 2GHz
Pentium IV processor, this approach is fast enough so that when
converting from strokes to ADFs there is no perceptual delay for
the user.  

For curve manipulation, we added a Bezier curve editor [Farin
2001] modeled after Adobe Illustrator. We also added the ability
to convert ADFs to curves to provide a seamless interface
between all three design paradigms. This conversion marches
through leaf cells using the ADF hierarchy for fast neighbor
searching [Frisken and Perry 2003], generates an ordered list of
points along the zero-valued iso-contours of the ADF, and then
fits curves as above. Unlike Schneider, who computes the curve
error from the list of points, we compute the curve error directly
from the ADF distance field. We pay special attention to corners
using the method described in [Itoh and Ohno 1993]. This
approach is fast enough to allow users to switch between
paradigms without any noticeable delay. 

To incorporate the existing legacy of fonts stored in non-
digital form (i.e., as analog masters) or in digital form as bitmaps
(i.e., as digital masters), our editing system provides a method for
generating ADFs from high-resolution bi-level bitmaps. Analog
masters are first scanned to produce bi-level digital masters at a
resolution at least 4x higher than the target ADF resolution (e.g., a
4096 x 4096 digital master is adequate for today’s display
resolutions and display sizes). An exact Euclidean distance
transform [Maurer et al. 2001] is then applied to the bitmap to
generate a regularly sampled distance field representing the glyph.
We then generate the ADF from this regularly sampled distance
field using the tiled generator of [Perry and Frisken 2001].
Conversion from the bitmap to the ADF requires ~10 seconds per
glyph on a 2GHz Pentium IV processor. 

 
6 A Computational Substrate for Kinetic Typography 
The distance field and the spatial hierarchy of the ADF
framework proposed in this paper play an important role in
simulation. For example, both components can be used in
collision detection and avoidance, for computing forces between
interpenetrating bodies, and for modeling soft body deformation
[e.g., Cani 1998; Desbrun and Gascuel 1995]. Level set methods
[Osher and Sethian 1988; Sethian 2001; Osher and Fedkiw 2002]
make use of signed distance fields to model numerous effects
such as melting and fluid dynamics. ADFs are a compact implicit
representation which can be efficiently queried to compute
distance values and gradients, two important computations
required for the methods listed above. In contrast, determining
distance values and gradients from outlines that are moving or
deforming is impractical in software for real-time interaction
[Hoff et al. 2001]. Hoff et al. use graphics hardware to generate a
regularly sampled 2D distance field on the fly for deforming
curves approximated by line segments. 

Figures 13–15 are still images from short animated vignettes
provided on the accompanying webpages. Each vignette
demonstrates some of the ways in which ADFs can be used to
create interesting effects for kinetic typography. In Figure 13, the
distance field is used to model real-time soft body deformations
following Cani [1998]. In Figure 14, the distance field is exploited

in a real-time particle system for attraction, repulsion, and
collision detection. The implicit nature of the distance field
permits complex topological changes (such as the surface offsets
shown in Figure 14) that would be difficult to model with outline-
based fonts. Figure 15 demonstrates the deformation of a glyph
due to a vorticity field using level set methods. The distance field,
used in the level set modeling, is also used to provide non-
photorealistic rendering of the evolving glyph to add artistic
effect. 

 

Figure 13. A single frame from an animated vignette to illustrate the use of ADFs to
model real-time soft body deformation. 

Figure 14. Three frames from an animated vignette which uses the ADF to attract
and repel particles in a real time particle system and uses the implicit nature of the
distance field to create offset surfaces from the glyphs. The distance field permits
complex topological changes that would be difficult to model with outline-based
fonts. 
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7 Conclusions and Future Work 
We have proposed a new framework for representing, rendering,
editing, and animating character glyphs that uses 2D bi-quadratic
ADFs. The bi-quadratic reconstruction function provides an
optimal balance between memory use and computational load.
The distance field provides an effective pre-filtering of glyph
outlines which provides better antialiasing using a single unhinted
sample per pixel than the supersampling methods used in the
industry. The spatial hierarchy of the ADF permits efficient
optimal adaptive supersampling for superior temporal antialiasing.
The distance field also provides a computational substrate for
automatic hinting, for unifying three common digital font design
paradigms, and for creating a variety of special effects for kinetic
typography.  

There are many avenues of research to be pursued. Some of
particular interest include performing rigorous perceptual studies,
a full treatment of automatic hinting, extending this framework to
exploit the repeating pattern of addressable colored sub-pixels in
LCD displays as is done in ClearType, and using distances and
distance gradients for rendering motion blur. 
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