a2 United States Patent
Waters et al.

US006359619B1

US 6,359,619 B1
Mar. 19, 2002

(10) Patent No.:
@5) Date of Patent:

(54) METHOD AND APPARATUS FOR
MULTI-PHASE RENDERING
(75) Inventors: Richard C. Waters, Concord; Thouis
R. Jones; Ronald N. Perry, both of
Cambridge; Larry D. Seiler, Boylston,
all of MA (US)
(73) Assignee: Mitsubishi Electric Research
Laboratories, INC, Cambridge, MA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/336,387
(22) Filed: Jun. 18, 1999
(51) Int. CL7 oo GO6F 15/00
(52) US.Cl oo 345/426
(58) Field of Searchccccccevvennne. 345/426, 427,
345/428, 581, 589, 617, 618
(56) References Cited
U.S. PATENT DOCUMENTS
5,864,342 A 1/1999 Kajiya et al. 345/418
6,222,937 B1 * 4/2001 Cohen et al. 382/154
6,292,194 B1 * 9/2001 Powell, III 345/430

OTHER PUBLICATIONS

Loren Carpenter; “The A—Buffer, an Antialiased Hidden
Surface Method”; Computer Graphics, vol. 18, No. 3, Jul,,
1984; pp. 103-108.

McCormack et al.; “Simple and Table Feline: Fast Elliptical
Line for Anisotropic Texture Mapping”; WRL Research
Report 99/1; Jul., 1999, available at www.research.digital-
.com/wrl/techreports/pubslist.html.

J. Torborg et al.; “Talisman: Commodity Realtimne 3D
Graphics for the PC”; Computer Graphics Proceedings,

Annual Conference Series; 1996; pp. 353-363.

[- 202

G'Sg

Lance Williams; “Pyramidal Parametrics”;
Graphics, vol. 17, No. 3; Jul., 1983; pp. 1-11.

Computer

* cited by examiner

Primary Examiner—Phu K. Nguyen
(74) Attorney, Agent, or Firm—Dirk Brinkman

7) ABSTRACT

In a method for rendering an evolving three-dimensional
scene description as a series of two-dimensional images
(frames), the evolving scene description includes object
geometries G and their associated shader procedures S. Each
shader procedure S is factored into a static procedure S; and
a dynamic procedure S, such that S(A,I)=S,S,(A,R),D),
where A denotes the appearance parameters required to
shade objects, I denotes an instance of the control
parameters, and R denotes a range of control parameters
which include I. Similarly, the rendering procedure TSI
(transform, sample, and interpolate) for object geometry is
factored into a static procedure TSI and a dynamic proce-
dure TSI, such that TSI(G,I)=TSI {TSL(G,R),I). The fac-
torization of both S and TSI is chosen to significantly reduce
the overall rendering time for the evolving scene.
Specifically, viewpoint independent or weakly viewpoint
dependent computations S (A,R) and TSI(G,R) are com-
puted in the static phase of rendering and stored either as
independent data structures or as a single combined data
structure called the internal representation. This internal
representation is then processed by the dynamic phase of
rendering to produce each frame. Since the required
dynamic computations to produce a frame are significantly
reduced and the required static computations run infre-
quently both as a result of a clever factorization and an
efficient internal representation, the overall rendering time is
reduced.

30 Claims, 5 Drawing Sheets

2212 2202

3

A

[TSIg
204 Static
phase

201

Y

GS ™ Factor | ’E’@‘ ------ >
240

!

Intermediate

Sq

\ rstance}—>{[TS1]

k 203

200

208
Representation
231
(\205 /1
Dynamic | II
"1 phase
L 209
230

US 6,359,619 B1

Sheet 1 of 5

Mar. 19, 2002

U.S. Patent

1281°
)

abew

1HV HOIHd
I "'BI4
€01} g
v
sainquuy
aoueleaddy
a|dweg
A_wu_lv SJiojsueled
A1V10dHALNI _o:cmo
H3AVYHS A..I c0l
JTdNVS
WHO4ASNVYHL .
SO
ﬁ\ ocl m OLL ~/ LOL

US 6,359,619 B1

Sheet 2 of 5

Mar. 19, 2002

U.S. Patent

oge
60¢ J

v aseyd

¢ Old

002

€0¢ .J

Aﬂ(vmm

uoljejuasalday

802~

A

onels

sobew| oweukq [
[1S |e———oourisuy)

sjeipawou; [€

oseyd € °bued

S0¢ /v

OvN.J

....... P |0JU0D

'

¥0c L

0Le
—

l0joe4

102
D)

m_m.r <

0cc ‘“lce

U.S. Patent Mar. 19,2002 Sheet 3 of 5 US 6,359,619 B1

309
|>

ISO{B)S

318
FIG. 3

301 302
D)

4-
S |

300

US 6,359,619 B1

Sheet 4 of 5

Mar. 19, 2002

U.S. Patent

'Ol

[ewliou K _ 9l

> (m_..v

PS ~—C LV

N AR

WwiedMein | 11y
NJo:u

US 6,359,619 B1

Sheet 5 of 5

Mar. 19, 2002

U.S. Patent

L0G

205

Qg 'Ol4
00S
216 A ®v]
gAY +'vl
orm{\//r
¢ o o AL AR
€05 3

|||

US 6,359,619 B1

1

METHOD AND APPARATUS FOR MULTI-
PHASE RENDERING

FIELD OF THE INVENTION

This invention relates generally to rendering two-
dimensional images representing three-dimensional objects,
and more particularly, to transforming, sampling,
interpolating, and shading in multiple phases.

BACKGROUND OF THE INVENTION

When rendering three-dimensional objects, two-
dimensional images are generated using a computational
description of a scene. The description specifies the scene as
a collection of three-dimensional objects and associated
shader procedures. There are many formats in which indi-
vidual objects can be represented ranging from a mesh of
non-uniform rational B-spline surfaces (NURBS) to an array
of independent three-dimensional points. A single descrip-
tion of the scene may utilize many of these formats.
However, no matter what format is used, the basic task is to
render a two-dimensional output image that represents the
scene.

Multiple output images (frames) can be rendered, over
time, to form an animated sequence. Usually, there are
twenty-four to thirty frames for every second of the ani-
mated sequence. Typically, many successive frames in the
animated sequence are nearly identical. The background
remains relatively constant, while only a small number of
objects move with respect to each other, and, perhaps, some
objects are added while others are removed.

Further, the viewpoint may change, but typically only by
a small amount from one frame to the next.

To take advantage of the similarity of successive frames,
the input to the animation system is often specified as an
evolving scene description. The evolving scene description
is incrementally modified between successive frames to
reflect changes in, for example, object position, viewpoint,
or the like. The evolving scene description can then be
rasterized using image coordinates, and interpolated to gen-
erate samples which are shaded by applying the appropriate
shader procedures.

Asshader is a key element of a three-dimensional renderer.
Shading deals with light, shape, material, and texture to
determine the appearance of visible surfaces from projective
geometry. Because viewers are extremely sensitive to
subtleties in shading, the shader must have the flexibility to
provide rich images that substantially duplicate the visual
reality of the physical world. Because shading can involve
complex computations, the shader should also be efficient.

Most prior art rendering systems operate in a single phase.
FIG. 1 shows a typical prior art rendering system 100. The
system includes a transform, sample, and interpolate (TSI)
component 110 and a shader component 120. The TSI
receives input in the form of an evolving scene description
101, and control parameters 102, for example, a viewpoint,
orientation, size, etc. The scene description 101 includes the
geometry (G) defining the shape of the objects in the scene,
along with a set of procedural shaders (S) which define how
each of the objects will be shaded.

It should be noted that some objects can be composed of
other objects. For example, a table object can include one
top glass object and four steel leg objects. The table object
will generally move and scale as a single unit while different
shader procedures are likely to be applied to the top glass
object and the steel leg objects.

10

15

20

25

30

35

40

45

50

55

60

65

2

The output of the TSI are sample points having appear-
ance attributes (A) 103. These attributes include values such
as the (X, v, z) position of the sample in shading coordinates
and image coordinates, a surface normal, the surface patch
parameters (u, v), and the texture coordinates (s, t). The TSI
transforms the scene description from object coordinates to
image coordinates using the current viewpoint. Rasterization
can be used to determine the desired samples, and interpo-
lation is used to generate the appearance attributes for the
sample points.

The shader (S) 120 applies the one or more procedural
shaders to the appearance attributes of each associated
object. The output of the shader 120 is a set of colored
samples which can be stored in a frame buffer to generate an
image 109. The color of each sample combines, for example,
the intrinsic color of the underlying sample, color informa-
tion from texture maps, diffuse and specular reflections
caused by light falling on the object, and other effects.

Additional processing steps (composite and filter) can
discard the samples that are hidden by other samples, merge
translucent samples with the samples behind them, and
calculate pixel values from merged sample values.

For high quality output, samples must be calculated at a
finer resolution than the pixel grid and multiple (sub-pixel)
samples must then be combined by filtering to generate each
pixel.

Traditional single phase rendering has a number of prob-
lems. First, the rendering is inefficient. In single phase
rendering, the entire scene description is processed by both
steps 110 and 120 for each image. Thus, each individual
image of the sequence is generated as if it were completely
different from every other image in the sequence. If thirty
images per second are desired, then all the relevant process-
ing must be done thirty times per second. This is straight-
forward and robust, but time consuming, particularly for
complex scenes.

Furthermore, many prior art traditional single phase ren-
dering systems are limited because they employ classical
(non-procedural) texture mapping. However, procedural
shading extends this rendering paradigm to provide rich
images that duplicate and amplify the visual reality of the
physical world. Procedural shading has many advantages
over systems limited to classical texture mapping: unrivaled
richness and image quality, resolution independence, no
seams at boundaries, memory efficient (on demand genera-
tion of each shaded sample point), appearance changes (e.g.,
add some dirt) are easily accommodated, surface distortions
are more easily avoided, geometry requirements are
reduced, and finally prefiltering is supported which results in
superior texture filtering.

U.S. Pat. No. 5,864,342, “Method and system for render-
ing graphical objects to image chunks,” issued to Kajiya et
al. on Jan. 26, 1999, also described by Torborg et al. in
“Talisman: Commodity Realtime 3D Graphics for the PC,”
ACM Siggraph, Conference Proceedings, pp. 353-363, Aug.
4-9, 1996, teaches a rendering system using a polygon
geometry.

That system takes a scene description and control infor-
mation as input to rasterization and shading to generate
32x32 pixel image “chunks.” The chunks are stored in a
database. This is done object by object creating chunks in an
incremental fashion. Rather than always processing the
entire scene description, rapidly changing parts can be
processed more often than other parts. This leads to chunk
updates that alter the database one chunk at a time.

To generate an image, a full set of chunks is read from the
database by an image transformation step, which alters each

US 6,359,619 B1

3

chunk to partially account for any change in viewpoint.
Samples determined from the chunks are sent to a composite
and filter step which produces the final image. Due to the
intermediate database, chunks can be generated at a slower
rate than they are used, concentrating on the chunks that are
changing most rapidly. For example, the chunks for an
object that is moving in the background can be updated less
frequently or with less accuracy than chunks for a fore-
ground object. This makes it possible to generate successive
images in an animated sequence without always processing
the entire scene for each image.

However, there are many problems with the way chunks
are generated and represented that limit their reusability in
multiple images, and therefore, limits the benefits of that
approach. To start with, all shading is done when chunks are
initially generated, and no shading calculations are done
when chunks are later used. This allows fast operation, but
makes it impossible to adjust a chunk to take proper account
of viewpoint sensitive shading effects such as specular
reflection. As a result, if the viewpoint changes even a small
amount, then the samples generated when reusing a chunk
are not the same as those that would be generated if the
chunk were recomputed, and image quality suffers. In
addition, the chunks are represented as two-dimensional
images. This allows fast, space efficient operation, but places
strong limits on the way chunks can be transformed.

For the above reasons, the Talisman system either has to
process most of the scene description most of the time, or
else generate low quality output. The user is faced with
either not getting much in the way of efficiency gains, or
tolerating bad output. Therefore, it is desired to provide a
three-dimensional rendering system that can produce high
quality images with reduced processing time.

SUMMARY OF THE INVENTION

The invention provides a method and apparatus for ren-
dering an evolving three-dimensional scene description as a
series of two-dimensional images (frames). In the method,
an evolving scene description includes object geometries G
and their associated shader procedures S. Each shader pro-
cedure S is factored into a static procedure S and a dynamic
procedure S, such that S(A,D)=S,S,(AR),]), where A
denotes the appearance parameters required to shade
objects, I denotes an instance of the control parameters, and
R denotes a range of control parameters which include I.
Similarly, the rendering procedure TSI (transform, sample,
and interpolate) for object geometry is factored into a static
procedure TSI, and a dynamic procedure TSI, such that
TSI(G,I)=TSI (TSI, (G,R),I). The factorization of both S and
TSI is chosen to significantly reduce the overall rendering
time for the evolving scene. Specifically, viewpoint inde-
pendent or weakly viewpoint dependent computations Sy(A,
R) and TSI(G,R) are computed in the static phase of
rendering and stored either as independent data structures or
as a single combined data structure called the internal
representation. This internal representation is then processed
by the dynamic phase of rendering to produce each frame.

Since the required dynamic computations to produce a
frame are significantly reduced and the required static com-
putations run infrequently, both as a result of a clever
factorization and an efficient internal representation, the
overall rendering time is reduced.

In one aspect of the invention, only the factorization of the
shading procedure S is performed. The static and dynamic
phases perform the shading computations as described
above. A data structure, called shader maps, is used to store

10

15

20

25

30

35

40

45

50

55

60

65

4

the results of the static shading computations, and the
globally reparameterized input geometry is used in the
dynamic phase.

In another aspect of the invention, both the factorization
of S and TSI is performed. The static and dynamic phases
perform both the shading and geometry computations as
described above, and a single combined data structure is
used to store both the results of the static shading compu-
tations and the static geometry computations.

In another aspect of the invention, both the factorization
of S and TSI is performed, the static and dynamic phases
perform both the shading and geometry computations as
described above, and separate data structures are used to
store the results of the static shading computations and the
static geometry computations. The static shading computa-
tions are stored in shader maps.

In another aspect of the invention, the range of control
parameters includes a range of viewpoints, and the instance
of control parameters includes a particular viewpoint, and
the static shader is either independent of the particular
viewpoint or weakly dependent on the particular viewpoint.

In another aspect of the invention, the intermediate rep-
resentation is expressed using an object coordinate system.

The intermediate representation can include a mesh of
polygons having vertices connected by edges (called
polygonal facets), or, alternatively, the intermediate repre-
sentation can include shader maps. Both polygonal facets
and shader maps are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a prior art, single-phase rendering system;

FIG. 2 is block diagram of a multi-phase rendering system
according to the invention;

FIG. 3 is a timing diagram of static and dynamic objects;

FIG. 4 is a diagram of polygonal facets used in a first
intermediate representation used by the invention; and

FIG. 5 is a diagram of shader maps used in a second
intermediate representation used by the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Multi-Phase Rendering

FIG. 2 shows a multi-phase rendering system 200 accord-
ing to the invention. The system 200 includes a factoring
step 210, a static rendering phase 220, a dynamic rendering
phase 230, and a controller 240. As above, the system 200
takes an evolving scene description 201 as input. The
evolving scene description includes object geometries (G)
with associated shader procedures (S). The output of the
system 200 is a sequence of images (frames) 209.

The factoring step 210 separates the evolving scene
description 201 into static parts 202 and dynamic parts 203.
The factoring step is a pre-processing step to the two
rendering phases 220 and 230. The static part includes static
geometry (G'), the static transform, sample, and interpolate
procedure TSI, and static shader procedures (S,); the
dynamic part 203 includes the dynamic transform, sample,
and interpolate procedure TSI, and the dynamic shader
procedures (S,). The static phase 220 performs shading and
further processing of G' according to a range 204 of values,
for example, a range of viewpoints, whereas the dynamic
phase shades and rasterizes for particular instances 205 of
values. A particular instance corresponds to a particular
frame.

US 6,359,619 B1

5

Both phases can include transform, sample, and interpo-
late components TSI, 221 and TSI, 231. Note: when using
shader maps as described below, TSI, 221 is optional. In one
embodiment of the invention, the TSI, performs a floating-
point perspective transformation on G' using a representa-
tive viewpoint to produce a fixed point intermediate repre-
sentation which is valid for a range of values. TSI, then
applies a fixed-point perspective warp to the intermediate
representation for a particular instance and frame. The fixed
point representation used by TSI, allows much more effi-
cient computation, but does not support the large dynamic
range supported by floating-point. The separation that
results from the factoring 210 reduces processing time,
storage, and bus bandwidth because the intermediate repre-
sentation needs to be “refreshed” only when there is a
significant change, for example, a large change in viewpoint,
or an entirely different scene.

FIG. 3 is used to contrast the static and dynamic rendering
phases according to the present invention. Static refers to
those objects (comprised of geometrical descriptions G and
shaders S) and processing that are substantially the same
over a number of images. Dynamic refers to objects and
processing for every frame. In FIG. 3, the horizontal line 300
indicates a sequence of images 301-309, where each tick
mark represents a frame. The horizontal lines 311-319
below indicate the appearance (and disappearance) of
objects in the sequence 300. The vertical dashed lines 321
and 322 indicate scene changes.

The purpose of the static rendering phase 220 is to
occasionally process the (static) objects (comprised of geo-
metrical descriptions G and shaders S) of the scene descrip-
tion that are constant or relatively constant. Background
objects, or foreground objects that remain mostly the same,
except for maybe small details in position, size, or orienta-
tion can be considered static. Also, shading computations
that are independent or weakly dependent on viewpoint and
other control instance parameters can be considered static.
Only when there is an abrupt change in the scene
description, or the accumulated change in an object over
many frames exceeds some threshold, does the static phase
need to reprocess the corresponding part of the scene
description. In contrast, the dynamic rendering phase 230
processes each object in the scene for every frame in the
sequence.

The controller 240 supplies the static rendering phase 220
with the range of control parameters 204. The range of
control parameters indicate, for each G and S, how the
appearance of the shape (G) and shade (S) are to be changed
over that range, if at all. For example, the range of control
parameters 204 can be a range of viewpoints, a range of
geometrical sizes, or the (u,v) ranges over which a shader S
should be evaluated.

In the case that an object is moved so that additional detail
becomes more (or less) visible, the scene description for that
object needs to be reprocessed to show (or hide) those
details. In other words, the end of a range is a threshold that
reactivates the static rendering phase for particular objects.
In some implementations, such as a video game, the opera-
tion of the controller can be in response to user input, and the
controller can attempt to predict the manner in which the
scene is evolving, and generate corresponding control
parameters.

In addition, the static phase or the controller can anticipate
the introduction of new objects into the scene. These objects
can be pre-processed ahead of their introduction.

The static phase 220 produces an intermediate represen-
tation 208 that is easy to process by the dynamic rendering

10

15

20

25

30

35

40

45

50

55

60

65

6

phase 230. For example, the intermediate representation 208
is in a form so that the dynamic phase 230 can use high-
speed fixed-point arithmetic units, instead of the slower
floating-point arithmetic units used by the static phase 220.

The dynamic rendering phase 230 applies the dynamic
shader procedures 203 and the dynamic transform, sample,
and interpolate procedures TSI, 231 to the intermediate
representation 208 of the static rendering phase using
instances of control parameters 205. There is an instance 205
for every frame in the sequence. The purpose of the dynamic
phase is to “adjust” the intermediate representation 208
(comprised of both shape and shade data) for any small
incremental differences in the appearance of objects in
successive images. For example, the difference might cor-
respond to the distance an object moves in Y40™ of a second,
or a like shift in the viewpoint. Each phase may also perform
some transformation, sampling, and interpolation as
described in greater detail below.

The two rendering phases 220 and 230 can operate
independently of each other, and at different rates. The static
phase 220 operates on an object only when there is a
significant change in the appearance of that object. The static
phase can store and update the intermediate representation
208 for that object in a database. The dynamic phase 230
executes for every image in the sequence.

Factoring

For most shaded three-dimensional objects, there exists a
continuous multi-dimensional surface parameterization. For
example, objects defined by meshes of parametric patches
have a per-patch parameterization that can be joined at the
borders. Many of the appearance attributes can be generated
as a function of this global parameterization. This global
parameterization is stored in G'. The parts that cannot be
generated might depend on dynamic parameters such as
viewpoint, or a change in position of the object in the scene.
Similarly for shape, the original TSI function can be factored
into a static function and a dynamic function where the
overall rendering time is reduced.

Therefore, the invention factors the shader procedures (S)
into S, 202 and S, 203 and the original TSI function into
TSI, 221 and TSI, 231. The static shader S is constant (or
nearly so) for control parameters in the range 204, while the
dynamic shader S, depends on the instances 205 of the
control parameters for each image. The TSI, 221 procedure,
in conjunction with the S; 202 procedure, transforms the
globally parameterized geometry G' into an intermediate
representation 208 tailored to very rapid rendering by TSI,
231 and S, 203 assuming that, for example, the current
viewpoint is in the range 204.

One key insight in multi-phase rendering is that, from one
image to the next in an animated sequence, the scene
description and/or viewpoint typically only change by a
small amount. More specifically, some of the objects in the
scene may move a little, a small number of objects may
appear or disappear, and the viewpoint may move a little, but
large changes happen infrequently. The other key insight is
that since many of the computations required by procedural
shading are independent of the viewpoint, these computa-
tions can be stored and retrieved by the dynamic phase to
reconstruct the output of the original unfactored shader
procedure S.

The fundamental reason for small changes in the scene
description and/or viewpoint is that two consecutive images
are typically separated by only a very small amount of time,
e.g., ¥50™ of a second. If a scene description and viewpoint

US 6,359,619 B1

7

only change a little bit from one image to the next, then most
of the (static) transforming, sampling, and interpolating
(TSI, 221) for the first image where an object appeared can
be reused, as long as the intermediate representation 208 is
sufficient for the new samples to be generated.

Similarly, if a scene description and viewpoint only
change a little from one image to the next, then most of the
computation done by shading (S,) for the first image is still
applicable to the second image. In particular, most of the
information that contributes to the color of a particular point
on an object are inherent properties of the point itself and are
largely independent of the exact position of the object in
relation to a viewpoint. The most notable exception to this
viewpoint independence is specular reflection which is
highly sensitive to the exact viewpoint. Therefore, the multi-
phase rendering according to the invention breaks shader
procedures up into two parts, the first of which (S,) depends
only weakly on the viewpoint and can be reused for multiple
images, and the second of which (S,) is recalculated for
every image in the sequence.

The central feature of multi-phase rendering is that the
dynamic phase 230, including TSI, 231 and S, 203, operates
on the entire scene (every object) for every image, while the
static phase 220 processes objects of the scene only
occasionally, if at all. The static phase 220 is organized to
operate on one object at a time so that it can operate on only
part of a scene at a given moment. In many animated
sequences, only a small part of the scene description requires
processing by the static phase in order to generate a next
image.

For most animation sequences, the static phase runs
infrequently. Therefore, the intermediate representation 208
is designed so that TSI, 231 applied to the intermediate
representation 208 is much faster than TSI applied to G (as
in the prior art). Also, S is factored so that S, (which includes
the access and processing of the stored computations of S;)
is faster than S. Consequently, multi-phase rendering can
produce a given quality of output in significantly less time
than single-phase rendering.

From image to image in an animation sequence, two kinds
of events trigger the need to reprocess an object in the static
phase: changes in viewpoint and changes in G'. Changes of
viewpoint relative to an object trigger static processing
whenever the current viewpoint leaves the range 204
assumed when the object was last processed.

Most of the changes in an animated sequence are repre-
sented by changes in G'. Some changes such as an object
moving in the scene can be accommodated by incrementally
modifying the intermediate representation 208 without hav-
ing to reprocess the object in the static phase. Other changes,
such as the appearance of a new object in a scene, require the
operation of the static phase.

Intermediate Representations

An important design consideration in multi-phase render-
ing is the choice for the intermediate representation 208 that
is passed from the static to the idynamic phase.

Therefore, the intermediate representation according to
the invention is expressed using object coordinates to allow
changes over a range of values, unlike the image chunks of
the prior art.

The intermediate representation 208 is three-dimensional,
so it specifies the (X,y,z) positions of data values, unlike the
two-dimensional values of the image chunks of the prior art.
Three-dimensional information is needed to accurately
determine how to render the intermediate representation for
a new current viewpoint in the range 204.

10

15

20

25

30

35

40

45

50

55

65

8

The representation not only specifies isolated data values,
but also specifies how values adjoin. This adjoining infor-
mation has the effect that changes of viewpoint will not lead
to erroneous cracks or overlaps in the images. In addition to
basic color and translucency information, the intermediate
representation 208 contains information needed by S,. For
example, if S, supports specular reflection, then the inter-
mediate representation 208 specifies lighting normals so that
reflections can be calculated accurately.

The resolution of the intermediate representation is sig-
nificantly higher than the pixel resolution of the images in
order to generate high quality antialiased images. The evolv-
ing object geometry of G itself satisfies all these
requirements, but G is time consuming to process. The
intermediate representation has a form that can be very
rapidly processed by the dynamic phase with a high degree
of parallelism.

For this to be possible, the data values must be simple
(e.g., stored in a fixed-point format), localized, and all in the
same format, or a very small set of formats. This contrasts
with G where some data specify information about large
areas of the image. Information from multiple sources must
be combined during shading (a second kind of failure to be
local), and a wide range of radically different representations
for objects are used.

Polygonal Facets—An Intermediate Representation
Combining Shape and Shade Attributes

As shown in FIG. 4, one intermediate representation uses
“polygonal facets.” Polygonal facets act as an intermediate
description of a graphical scene. Polygonal facets are the
result of processing objects (G') in the static phase 220.
Polygonal facets encode much of what is needed for
dynamic rendering. However, polygonal facets leave enough
undone so that the dynamic phase 230 can generate highly
accurate images from a variety of different viewpoints. This
representation also makes it possible to support the relative
motion of objects in a scene merely by changing the posi-
tions associated with polygonal facets rather than recom-
puting them.

FIG. 4 illustrates a polygonal facet 400 that is represented
as a small triangle. Typically, polygonal facets are either
triangles or quadrilaterals. Because a polygonal facet is a
polygon with edges, it is possible to specify the exact way
polygonal facets adjoin. An object is represented by a mesh
of polygonal facets that covers its surface. The fact that
polygonal facets are specified using shared vertices and
edges means that erroneous cracks and overlaps will not
arise when a group of polygonal facets are rendered from a
changed viewpoint.

Each polygonal facet is associated with a set of data
values including its vertices and a block of additional data
410. For instance, the triangular facet 400 has vertices 401,
402 and 403, and is associated with the data block 410. The
position of a polygonal facet in three dimensional space is
specified by the coordinates (x,y,z) of each vertex of the
polygonal facet. This allows the polygonal facet to be
accurately rendered from alternate viewpoints. As stated
above, the coordinates are specified in object space rather
than image space to facilitate the reuse and modification of
polygonal facets, e.g., when an object moves.

If the distance between pixels in the viewing plane is P,
then polygonal facets are generated in the static phase 220
so that the apparent length of each edge when projected on
the viewing plane is less than P/2. This guarantees that the
polygonal facets are small enough so that high quality

US 6,359,619 B1

9

images can be produced from them. In addition, wherever
possible, the apparent length of edges is kept longer than
P/4. This reduces the number of polygonal facets and
therefore the required computation in both phases.

The small size of the polygonal facets allows information
to be specified at a significantly higher level of detail than
the final image. This allows high quality anti-aliasing of the
resulting image. Although the spacing between polygonal
facets is based on the spacing between pixels, polygonal
facets are aligned with the objects they represent, rather than
the pixels in any one image.

The data block 410 includes the viewpoint 411 from
which the polygonal facet was originally rendered by step
220, and a delta_ V value 412 that specifies the maximum
change of viewpoint over which the polygonal facet can
accurately be used. This value can be represented in many
ways including a polar coordinate-like representation with
respect to the object. For instance, delta_ V might specify
that when the distance between the viewpoint and the object
changes by more than a factor of 2, or moves more than 20°
around the object, then the polygonal facet must be regen-
erated.

The data block 410 also specifies the dynamic shader S,
413 to be used. To understand the meaning of this, consider
the following. One of the items specified by a scene graph
is the shading calculations to be used for each object.
Suppose that the scene graph specifies that a shader proce-
dure S is to be used for an object A. Also associated with
each polygonal facet is an RGB color 414 and a translucency
value (c) 415 that is calculated by S,. In addition, a surface
normal 416 used for lighting calculations is stored. The
dynamic shader S, 413 uses this stored data to compute the
shaded value for each sample point.

The polygonal facet data generated by the static phase can
be stored in a database indexed by the object. The static
phase keeps this database updated, occasionally creating
new intermediate descriptions of objects. This updating is
done, for example, whenever the relationship between the
viewpoint and an object changes sufficiently so that the
stored intermediate representation 208 can no longer be used
for efficient and accurate output. For instance, if the distance
from the viewpoint to an object is cut in half, a new more
detailed intermediate representation is needed to maintain
accuracy. Alternatively, if this distance doubles a new lower
resolution intermediate representation is needed to maintain
optimal efficiency.

Shader Maps

As shown in FIG. 5, another intermediate representation
uses multi-resolution shader maps 501-504. Shader maps
can be considered an evaluation of S, at multiple levels of
detail. As shown in FIG. §, shader maps 500 have a structure
similar to well known prior art texture maps, also known as
N-tuple mipmaps, where each map represents a function
from [0, 17°—R" at a specific resolution). However, shader
maps serve a much broader purpose than texture maps in that
the shader maps enable procedural shading instead of simple
texture mapping.

Like texture maps, shader maps 501-504 are computed
and stored for multiple resolutions, e.g., 1x1, 2x2, . . .,
512x512, 1024x1024, etc. Because shader maps are stored
at multiple resolutions, varying sampling rates can easily be
accommodated. Unlike texture mapping, shader maps use a
tiling scheme to minimize computation and storage. A tile
consists of a rectangular subset of a map, e.g., a 16x16
region of a 512x512 map. Tiles, and hence maps, are
populated with the S, computations on demand.

10

15

20

25

30

35

40

45

50

55

60

65

10

Each n-tuple i 510, in a particular map, stores values that
are statically known or can be computed in the static phase.
For example, a particular shading computation is expressed
as C=A+A,+(A)(K,,..)- Here, the values A,, A, and A,
are static quantities, perhaps computed from complex
expressions of other static quantities. The value K, is the
contribution due to specular lighting, which is dynamically
dependent on the current viewpoint.

In this case, the n-tuple 1 510 stores the sum of A, and A,
511 and the value A; 512. Then, the dynamic phase only
needs to compute the contribution due to specular lighting
K,, .. the product (A;)(K,,,..), and the final sum C. Since the
static quantities typically represent the bulk of the compu-
tational burden of a shader, there are significant savings in
shading execution time relative to prior art systems.

To compute the final shaded value (e.g., C in the expres-
sion defined above), the dynamic phase needs to resample a
viewpoint dependent subset of n-tuple entries contained in
the appropriate shader map. When using isotropic filtering to
perform the resampling, similar to trilinear mipmapping as
described by Williams in “Pyramidal Parametrics,” SIG-
GRAPH 1983, pp. 1-11, the reconstruction is performed by
combining 2 n-tuple probes from adjacent levels of resolu-
tion in a shader map to form the end result of the filtering
operation. Each probe is comprised of a set of n-tuple entries
in a shader map level. The n-tuples comprising this set are
combined with an isotropic filter, e.g., a 2x2 bilinear filter,
to produce the n-tuple for that probe. The set of entries for
each probe is the set of entries within the support of the
isotropic filter.

Similarly, when using multi-probe anisotropic filtering to
perform resampling, similar to the Feline algorithm as
described by McCormack et al. in “Feline: Fast Elipical
Lines for Anisotropic Texture Mapping,” WRL Research
Report 99/1, July 1999, the reconstruction is performed by
combining multiple n-tuple isotropic probes, where each
isotropic probe is the end result of an isotropic filtering
operation as described above. The n-tuple isotropic probes
are weighted and combined according to an anisotropic
filter.

These generalizations of isotropic and anisotropic filter-
ing to a richer set of data representations, i.e., the stored
static quantities computed by S, in conjunction with the
computations performed by S, create a high quality recon-
struction of the output of the original shader S with dra-
matically lower computational costs. This is a key effect of
the present invention.

Before rendering any frame, the controller 240 can first
generate partially populated shader maps for each shader
procedure so the resampling done by S, is guaranteed to
have some data. For example, the controller can force the six
lowest resolution shader maps (e.g., 1x1, 2x2, 4x4, 8x8,
16x16, and 32x32) to be available at all times so that S,
never has to wait. There are two alternatives for predicting
the tiles required by the resampling process (the resampling
process is a part of S, 203).

The first alternative generates the tiles adjacent to the tiles
requested previously by the resampling process during ren-
dering. In the second alternative, the controller 240 includes
a low resolution rendering engine that periodically generates
the entire scene to predict future shader map needs. If the
prediction turns out to be wrong, then lower resolution
shader maps can be used. The tiles can be stored in and/or
removed from a memory using a least recently used (LRU)
algorithm to reduce storage requirements.

Shader maps can readily be applied to various forms of
geometry, e.g., NURBS, bicubic patches, triangles, point

US 6,359,619 B1

11

samples, volumes, surfers, and other three-dimensional geo-
metric formats. Because shader maps are similar in structure
to texture maps, the intermediate representation of geom-
etries can be in any form that is compatible with texture
maps, and subsequently the invention can be employed with
known texture mapping systems such as OpenGL™ and
RenderMan™. For geometry lacking a parameterization, a
necessary ingredient for texture mapping, the factoring
operation creates a global parameterization and attaches it to
the input geometry G to form G'.

Applications

The primary intended application of multi-phase render-
ing according to the invention allows complex animated
scenes to be rendered with a stable high frame rate, e.g.,
thirty frames per second. Used this way, the static phase
processes as much of the scene description as time allows,
even if the quality of the intermediate representation 208 is
reduced occasionally to meet the “frame” rate. Alternately,
multi-phase rendering can be used to generate output of
constant quality at a varying frame rate.

While multi-phase rendering is designed primarily to
support animated sequences, it is also useful when rendering
any group of images that are based on similar scene descrip-
tions. For example, if a person were exploring variations of
an image to arrive at just the right single image, then
multi-phase rendering could speed the exploration process.
Multi-phase rendering can also be useful when creating a
single image, when the image contains repeated elements
that can be rendered once in the static phase, and used
multiple times in the dynamic phase.

The motivation behind multi-phase rendering is to sup-
port real-time interactive three-dimensional graphics, e.g.,
three-dimensional visualization and game playing.
However, it can also make the production of animated
movies and the like more efficient.

Extensions

The discussion above presents multi-phase rendering in
its simplest form. There are many important ways it can be
extended.

A key extension of the invention is realizing that while
both TSI, and TSI, and both S, and S, are most easily
understood as logically distinct processes, they are very
similar from a hardware perspective. In particular, resam-
pling and reinterpolation done by TSI, is essentially a
variation of the sampling and interpolation done by TSI,
and S, is a specialized case of the same kind of processing
as S,. As a result, a hardware implementation of multi-phase
rendering can use the same components to support much of
both the static and dynamic phases, time multiplexing the
circuits between the two tasks. This hardware can generate
the intermediate representation and the samples for the
image.

For example, a shader processor can occasionally perform
the static computations while a control unit provides the
range of control parameters to produce the intermediate
representation. The same processor performs the dynamic
computations for every image while the control unit supplies
the instance of the control parameters to generate the colored
samples for the image.

In principle, the intermediate representation can be com-
pletely independent of viewpoint, rather than dependent on
a range of viewpoints. This is true for many of the compu-
tations required by procedural shaders. Now, consider this
observation about viewpoint independence as it pertains to
geometry. In some situations, such as a scene with a rapidly
rotating and moving object, this independence is useful.

10

15

20

25

30

35

40

45

12

However, in other situations, a certain amount of viewpoint
dependence is valuable. In particular, if it is known that an
object, e.g., a distant building, has a restricted range of
viewing angles, then the memory requirements for storing
the corresponding intermediate representation can be
reduced by an order of magnitude or more by omitting parts
of the object that will never be viewed, and using a lower
resolution for parts of the object that face sideways from the
viewpoint. With this approach, storage requirements are
reduced and the dynamic phase is accelerated.

By reducing the size of the intermediate representation,
the computation in the dynamic phase is proportional to the
number of pixels in the image, rather than the complexity of
the scene description.

If the level of detail in the intermediate representation is
allowed to vary dynamically by using a hierarchical
representation, then the static phase can generate relatively
detailed information, and the dynamic phase can select the
exact level of detail that is most appropriate for a current
viewpoint. This decreases the number of computations done
in the dynamic phase at the cost of increasing the number of
computations done in the static phase. This is a good
trade-off when the intermediate representation is used for
many successive frames in the animated sequence. This also
makes the transitions smoother when levels of detail change.

As stated above, the intermediate representation can also
contain descriptions of objects about to enter the scene;
these can be precomputed by the static phase. Then, the
transition to the scene including the new object can be
accomplished in a single frame.

Advantages

Rendering efficiency is increased without sacrificing
image quality by separating static shading requirements
from dynamic ones. Static requirements are dealt with at a
much lower frequency, and at a correspondingly lower
computational cost. Dynamic requirements (including the
retrieval of previously computed static requirements from
storage) are much smaller than the original shading require-
ments and therefore can be computed much more efficiently.

Similarly, factoring the original geometry into static and
dynamic components also increases rendering efficiency.
For example, perspective transformations on static compo-
nents require floating point operations in order to produce
fixed point coordinates at an arbitrary viewpoint. Perspec-
tive transformations on the dynamic components can use
fixed point computations to modify the fixed point coordi-
nates at the original viewpoint to a range of nearby view-
points. This significantly reduces processing time, storage,
and bus bandwidth because the intermediate representation
needs to be refreshed infrequently.

This invention is described using specific terms and
examples. It is to be understood that various other adapta-
tions and modifications may be made within the spirit and
scope of the invention. Therefore, it is the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
invention.

We claim:

1. A method for rendering an evolving scene description
including an object geometry and a shader procedure as an
image, comprising the steps of:

factoring the shader procedure into a static shader proce-

dure and a dynamic shader procedure;

applying the static shader procedure to the object geom-

etry using a range of control parameters to produce an
intermediate representation; and

applying the dynamic shader procedure to the intermedi-

ate representation using an instance of the control
parameters to generate colored samples for the image.

US 6,359,619 B1

13

2. The method of claim 1 wherein the static shader
procedure is independent of the range of control parameters.

3. The method of claim 1 wherein the range of control
parameters includes a range of viewpoints, and the instance
of control parameters includes a particular viewpoint.

4. The method of claim 1 wherein the intermediate
representation is expressed in three-dimensions using a
coordinate system of the object geometry.

5. The method of claim 1 wherein the intermediate
representation includes multiple levels of resolution.

6. The method of claim 5 wherein each level of resolution
is stored as a shader map.

7. The method of claim 6 wherein the shader maps include
at least a lowest level of resolution shader map.

8. The method of claim 6 wherein each shader map
includes a plurality of n-tuples.

9. The method of claim 8 wherein rectangular groups of
n-tuples are organized as tiles.

10. The method of claim 9 further comprising the step of:

predictively generating the tiles according to adjacent
previously generated tiles.
11. The method of claim 9 further comprising the step of:

rendering a low resolution image of the evolving scene to
anticipate tiles required by the dynamic shader proce-
dure.

12. The method of claim 9 wherein the tiles are main-
tained in a memory using a least recently used algorithm.

13. The method of claim 1 wherein the dynamic shader
procedure performs isotropic filtering on the intermediate
representation.

14. The method of claim 1 wherein the dynamic shader
procedure performs multi-probe anisotropic filtering on the
intermediate representation.

15. The method of claim 1 wherein the application of the
dynamic shader procedure on the intermediate representa-
tion replaces texturing and lighting.

16. The method of claim 1 wherein the object geometry
includes a mesh of non-uniform rational B-spline surfaces.

17. The method of claim 1 wherein the object geometry
includes bicubic patches.

18. The method of claim 1 wherein the object geometry
includes polygons.

19. The method of claim 1 wherein the object geometry
includes point samples.

20. The method of claim 1 wherein a plurality of images
are generated for the evolving scene, and wherein the
dynamic shader procedure is applied for every image, and
the static shader procedure is applied for a subset of the
images.

21. The method of claim 1 wherein the evolving scene
description includes a transform, sample, and interpolate
procedure, and further comprises the steps of:

factoring the transform, sample, and interpolate procedure

into a static transform, sample, and interpolate proce-
dure and a dynamic transform, sample, and interpolate
procedure;

applying the static transform, sample, and interpolate
procedure to the object geometry using a range of
control parameters to produce the intermediate repre-
sentation; and

applying the dynamic transform, sample, and interpolate
procedure and an instance of the control parameters to
the intermediate representation to generate colored
samples for the image.
22. The method of claim 21 wherein the intermediate
representation includes a mesh of polygons having vertices
connected by edges.

10

15

20

25

30

35

40

45

50

55

60

14

23. The method of claim 22 wherein the vertices are
specified using three dimensions using a coordinate system
of the object geometry.

24. The method of claim 22 wherein the edges are less
than P/2 and greater than P/4, where P is the spacing
between pixels in the image.

25. The method of claim 22 wherein each polygon has an
associated data block, the data block storing a viewpoint, a
range of viewpoints, a particular dynamic shader procedure,
an RGB color, a translucency value, and a surface normal.

26. The method of claim 21 wherein the object geometry
is transformed by the static transform, sample, and interpo-
late procedure using a representative viewpoint and high
dynamic range arithmetic to produce a low dynamic range
intermediate representation valid for the range of control
parameters, and the dynamic transform, sample, and inter-
polate procedure performs a perspective warp on the low
dynamic range intermediate representation to produce the
image.

27. An apparatus for rendering an evolving scene descrip-
tion including an object geometry and shader computations
as an image, comprising:

a shader processor performing static shader computations

and dynamic shader computations;

a control unit providing the shader processor with a range
of control parameters while the shader processor is
performing the static shader computations on the object
geometry to produce an intermediate representation,
and providing the shader processor with an instance of
the control parameters while the shader processor is
performing the dynamic shader computations on the
intermediate representation to generate colored
samples for the image; and

a memory, connected to the shader processor, storing the
intermediate repreesentation.

28. The apparatus of claim 27 wherein the apparatus
renders a plurality of images for the evolving scene, and
wherein the shader processor performs the dynamic shader
computations for every image, and the static shader com-
putations for a subset of the images.

29. The apparatus of claim 27 wherein the memory stores
shader maps.

30. The apparatus of claim 27 wherein the evolving scene
description includes transform, sample, and interpolate
computations, and further comprising:

a transform, sample, and interpolate processor performing
static transform, sample, and interpolate computations
and dynamic transform, sample, and interpolate com-
putations;

a control unit providing the transform, sample, and inter-
polate processor with a range of control parameters
while the transform, sample, and interpolate processor
is performing the static transform, sample, and inter-
polate computations on the object geometry to produce
an intermediate representation, and providing the
transform, sample, and interpolate processor with an
instance of the control parameters while the transform,
sample, and interpolate processor is performing the
dynamic transform, sample, and interpolate computa-
tions on the intermediate representation to generate
colored samples for the image.

	1: Bibliography
	2: Drawings
	3: Drawings
	4: Drawings
	5: Drawings
	6: Drawings
	7: Description
	8: Description
	9: Description
	10: Description
	11: Description
	12: Claims
	13: Claims

