US006553394B1

a2 United States Patent

10y Patent No.: US 6,553,394 B1

Perry et al. @5) Date of Patent: Apr. 22,2003
(54) CONTINUOUS MEMOIZATION 5,862,400 A * 1/1999 Reed et al.ccooueueene 708/490
5,987,254 A 11/1999 Subrahmanyam
(75) Inventors: Ronald N. Perry, Cambridge, MA 6,223,192 B1 * 4/2001 Oberman et al. 708/270
(US); Thouis R. Jones, Cambridge, 6,256,653 B1 * 7/2001 Juffa et al. 708/290
MA (US) 6,263,323 B1 * 7/2001 Baggettc..ccoccovvunn.. 705/400
(73) Assignee: Mitsubishi Electric Research OTHER PUBLICATIONS
Laboratories, Inc., Cambridge, MA Baggett, Technique for Producing Constructed Fares, May 2,
(Us) 2002, U.S. patent application Publication No. US 2002/
0052854 A1.*
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days. . . .
Primary Examiner—Chuong Dinh Ngo
Assistant Examiner—Chat C. Do
(21) Appl. No.: 09/488,584 (74) Attorney, Agent, or Firm—Dirk Brinkman
(22) Filed: Jan. 21, 2000 (57) ABSTRACT
7
(51) Imt. CL7 i GO6F 15/00 A method memoizes a computation as follows. A set of input
(52) U..S. Clo e 708/200 parameters is provided to the computation. A determination
(58) Field of Searchcccoovvvevvivennnn.. 708/110, 654, is made to see whether a memo contains results of the
708/490, 290, 200, 620, 270; 340/146.2; computation on sets of memoized parameters near the set of
717/141, 131; 712/34 input parameters. If true, the computation for the set of input
(56) References Cited parameters is reconstructed using the results of the compu-

U.S. PATENT DOCUMENTS

tations on the sets of memoized parameters near the set of
input parameters. If false, the computation is performed
using the set of input parameters. A result of the computation
on the set of input parameters is then memoized, and that
result is provided as output of the computation.

3,846,625 A * 11/1974 Sasayama

3,996,456 A * 12/1976 Hoover

5,260,898 A * 11/1993 Richardson ..

5,819,102 A * 10/1998 Reed et al. ...
#*

5828501 A * 10/1998 Rotstain

19 Claims, 2 Drawing Sheets

310 312 314 318 330
/ - / / / Vi
re there sufficient
Input Pezlr)ameters || values near | to CoFm;()Il)Jte (;o(rlrzwpulte |, Result
reconstruct Fp(1)? m o(Fm(D) (R)
Sufficient Values? T .
Memoize
No

300 Memo

Yes

316

Reconstruct Fy(l) using
values near |

/
315

U.S. Patent Apr. 22, 2003 Sheet 1 of 2 US 6,553,394 B1
100
110 120 130
VA l /
Input Parameters Computation Result
(" (F) (R)
FIG. 1
PRIOR ART
210 215 220 230
Vi l / /
Input Parameters Islin Compute Result
(1 memo? F A | (R
| T ‘
I? .
Memoize
Y No l
200 Memo
Yes——»
4
216
FIG. 2
PRIOR ART
310 312 314 318 330
? ? _ / 2 7
Input Parameters Are there sufficient Compute Compute Result
| values near | to F. () ™ E(F) — R
0 reconstruct Fp,(1)? m crm (R)
A
Sufficient Values? T ,
Memoize
No

300

Memo |« ' Reconstruct F(l) using
v Yes) values near |
316 /
315
FIG. 3

U.S. Patent

Apr. 22,2003

Sheet 2 of 2

US 6,553,394 Bl

401
/
Iy +
:
402 ~1; 1 :
! ! ~ 400
L, L I I .
! : | :
403 . | |
I | I
i | |
I |]
1 L]
R, R, R,
{ { {
411 412 413
FIG. 4
510 512 520 530
/ / / /
Input Are there sufficient
parameters » values near | to COE?Ute > R?RS;J”
() reconstruct F(l) ()
T A
Sufficient values?
500 No
memoize
Memo | Reconstruct
Yes F(l) using
{ values near |
516
(
515

FIG. 5

US 6,553,394 Bl

1
CONTINUOUS MEMOIZATION

FIELD OF THE INVENTION

This invention relates generally to decreasing the number
of computations that need to be done in a computer system,
and more particularly to using memoization to reduce the
number of computations.

BACKGROUND OF THE INVENTION

The term “memoization” is known in the field of com-
puter science as a technique for recording and remembering
the results of previous computations so that repeating the
same computations can be avoided, see Field et al., in
“Memoization,” Addison-Wesley Publishing Company
Functional Programming, Chapter 19, pp. 505-506, 1988.
The term comes from the word “memo”—*“A short note
written as a reminder,” The American Heritage Dictionary of
the English Language, 1970, American Heritage Publishing.
Memorization techniques have also been used to save results
of data dependence tests in order to avoid calling data
dependence routines multiple times for the same input. See,
Dror Maydan, et al., in “Efficient and Exact Data Depen-
dence Analysis,” Proceedings of the ACMSIGPLAN 1991.

For example, it is desired to compute the Fibonacci
numbers using the following simple program:
fib(n) {
if nis 1 or 2, return 1;
return fib(n-1)+fib(n-2);

A method 100 for performing this computation is shown
in FIG. 1. The input parameters (I) are provided in step 110.
The computation itself (F) is done in step 120, and the result
(R) is provided in step 130. Because fib() is recomputed
over and over for the same argument, run time for the above
method is O(1.67).

A more complex program computes the Fibonacci num-
bers as follows:

allocate array for memo, initializing all elements to zero
initialize memo[1] and memo[2] to 1;

fib(n) {
if memo[n] is not zero, return memo[n];
memo[n]=fib(n-1) +fib(n-2);
return memo[n];

When the value of fib(n) is memoized, the run time is
reduced and becomes O(1) if n is in the memo and O(n) if
n is not in the memo.

FIG. 2 shows how memoization is used to speed up the
method. As above input 210 is provided in step 210. Step
215 determines whether a result (R) for this particular input
(I) is contained in a memo 216. If true, the memo is read and
the result (R) is provided in step 230. Otherwise, if false,
compute the result (R). in step 220, memoize the result in the
memo, and provide the result in step 230.

The problem with this method is that the input must
exactly match what is contained in the memo, that is the
memo is limited to storing and producing discrete values,
and thus the prior art memoization method has limited
utility. The need remains to provide a more efficient and
versatile memoization method.

SUMMARY OF THE INVENTION

A method memoizes a computation as follows. A set of
input parameters are provided to the computation. A deter-

10

15

20

25

30

35

40

45

50

55

60

65

2

mination is made to see whether a memo contains results of
the computation on sets of memoized parameters near the set
of input parameters. If true, the computation for the set of
input parameters is reconstructed using the results of the
computations on the sets of memoized parameters near the
set of input parameters. If false, the computation is per-
formed using the set of input parameters. A result of the
computation on the set of input parameters is then
memoized, and that result is provided as output of the
computation.

Reconstruction can be done by applying some continuous
function, such as interpolation, on the memoized results.
Additionally, the computation can be partitioned into a
number of partial computations, and only selected partial
computations are memoized.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a conventional computational
process;

FIG. 2 is a block diagram of a process with memoization;

FIG. 3 is a block diagram of the process with partial
continuous memoization according to the invention;

FIG. 4 is a graph of continuous memoization according to
the invention; and

FIG. § is a block diagram of a process with continuous
memoization according to the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT
Introduction

We define continuous memoization as a method that
memoizes results of full or partial computations on discrete
sets of input parameters. We use the results to reconstruct the
computation of an unknown set of input parameters by
applying a continuous function on the memoized results.
This method avoids recomputing the result for every discrete
set of input parameters. In other words, from discrete
memoized results we reconstruct results for continuous sets
of input parameters.

Continuous Reconstruction Functions

FIG. 4 is a graph 400 that shows the continuous memoiza-
tion method according to our invention. The graph plots sets
of input parameters (I) on the y-axis, and corresponding
memoized results (R) on the x-axis. It should be understood
that this graph is only an example and that the inputs and
results can have any number of dimensions.

In the graph 400, a value I, 401 represents a first set of
input parameters contained in a memo, and R, 411 the
corresponding result for some computation (F). Similarly, I,
402 and R, 412 are a second set of input parameters and
corresponding results. A next computation has a set of input
parameters I5. In this case, the memo does not contain a
corresponding result.

At this point, prior art memoization methods would
perform the computation (F). However, according to our
invention, a determination is made to see whether the third
set of parameters is “near” previously contained sets of
parameters. If true, as in the example illustrated in FIG. 4,
the results of the nearby sets of parameters, i.e., R; and R,
are interpolated to obtain a result R.

In the example, the continuous interpolation function is
linear. However, it should be understood the interpolation
can be bilinear and trilinear depending on the dimensionality
of the parameter space. Other nonlinear continuous func

US 6,553,394 Bl

3

tions can also be used such as exponential and logarithmic.
One could also use continuous filters, such as a Gaussian
filter, to derive the desired computation.
Sufficiency of Memo

Any number of known techniques can be used to deter-
mine whether the memo contains sufficient results to recon-
struct the computation. For example, if the interpolation is
bilinear, then having four results for input parameters
located at the four grid corners of a cell would be sufficient
to reconstruct any parameter set that lies within that cell. If
the interpolation is trilinear, the eight comers of a “box”
would be sufficient to reconstruct results for any parameters
located within the box. Sufficiency, in most cases, is deter-
mined by the nature of the input parameters, the
computation, and the reconstruction method.
Continuous Memoization Method

FIG. 5 shows a method 500 that implements continuous
memoization according to the invention. A set of input
parameters (I) are provided in step 510. Step 512 determines
whether a memo 516 contains results of parameters sets near
the set of input parameters. If true, reconstruct the compu-
tation by interpolating the memoized results, and provide the
reconstructed result (R) in step 530. Otherwise, perform the
computation (F) and memoize the result in step 520, and
continue with step 530.
Partial Computations

In some cases, memoizing the results of full computations
may be too difficult, or too costly in memory storage to gain
any advantage. In such cases, we partition the computation
into a plurality of partial computations. For example, a
computation F is partitioned into partial computations, e.g.,
F,, F,, and F;. Assume we make the decision to only
memoize the parameters and results for the partial compu-
tation F,. Then, we can combine the reconstruction of F,
with the partial computations F, and F; to obtain the
complete result. Of course, we could also memoize each
partial computation to simplify the memoization problem, or
choose other combinations of partial computations.
Example Partial Computation

The following exemplary program illustrates our continu-
ous memoization with partial computations.

For four input parameters (I), it is desired to perform the
following computation:
float computeSomething (al, a2, a3, a4)

{
// al and a2 are the memoized parameters
fl=log(cos(al)*(sin(al)-al*al*al*al))
f2=sqrt(a2*abs(sin(a2)-cos(a2-1)))
f3=sqrt(al*al+a2*a2+(al-a2)*(al-a2))
f4=f1*(log(f1)-log(f2)*sin(f3))
f5=f4*sqrt(a3*a3+ad*ad+(a3-a4)*(a3-a4))
return(fs5)

} In order to reduce the run time of this program, we rewrite
the program computeSomething as two functions, e.g., two
partial computations: computeSomething memoize and
computeSomething.
// Memoize the partial computation f4 for location (al,a2)
computeSomething memoize (al, a2)
{
// al and a2 are the memoized parameters
fl=log(cos(al)*(sin(al)-al*al*al*al))
f2=sqrt(a2*abs(sin(a2)-cos(a2-1)))
f3=sqrt(al*al+a2*a2+(al-a2)*(al-a2))
f4=f1*(log(f1)-log(f2)*sin(f3))

4
memoize(“computeSomething _memo”,al,a2,{4)

}

and
// The original computation rewritten to use continuous
memoization float computeSomething (al, a2, a3, a4)

fd=reconstruct(al,a2)
f5=f4*sqrt(a3*a3+ad4*ad+(a3-ad)*(a3-ad))
return(f5)

10 }

15

20

25

30

35

40

45

60

65

The function memoize memoizes f4 at location (al,a2) in
the memo computeSomething_memo.

The function reconstruct calculates f4 by interpolating
values contained in the memo computeSomething memo
“near” the requested (al,a2) location. If locations near (al,
a2) are empty, then reconstruct invokes the function
computeSomething memoize to compute the necessary
values for interpolation.

Continuous Memoization for Partial Computation

Our partial continuous memoization is shown in FIG. 3.
The set of input parameters is provided in step 3 10. Step 3
12 determines whether there are sufficient parameters in the
memo 316 that are near (I) for reconstructing F, (I), where
F(I)=F(F,,()). If sufficient parameters are not available,
then determine the partial computation F, (1) in step 314, and
memoize the result of the partial computation in the memo
316. The result of the partial computation is then used in step
318 to complete the full computation F (F, (I)). This full
computation is then provided to step 330. Otherwise, if
sufficient parameters are available, then F,(I) is recon-
structed in step 315 using the results of the previously
memoized partial computations on input parameters that are
near I. The reconstruction can be done using an interpolatory
function suitable for the computation. Linear interpolation,
bilinear interpolation, and trilinear interpolation are
examples of an interpolatory function, where the particular
function to use would depend on the number of memoized
input parameters in the set.

Continuous memoization does not require the full com-
putation to be decomposed into two stages (F, and F,) as
described above. In fact, continuous memoization can be
used to accelerate computations that consist of any number
of stages. For example, if a computation G is comprised of
the four stages G,, G,, G5, and G, continuous memoization
can be applied to a single stage such as G, and to any
combination of multiple stages such as G; and G;. Some
stages may not be amenable to continuous memoization
because they are too complex, e.g., require too many param-
eters to memoize, or the computation of the stage is
extremely unpredictable, and therefore to difficult to recon-
struct accurately.

Memo Structure

In a preferred embodiment, the memo is stored in a cache
like memory device. Least recently used replacement (LRU)
algorithms can be used to keep the cache at a reasonable
size. The cache can be partitioned into tiles, where a tile is
the minimal amount of a memo that can be accessed for
reading or writing. The size of the tile can be adjusted for a
particular computation.

In addition, the memo can be maintained at multiple
levels of resolution, for example, the tiles can be arranged as
a pyramid with coarse, middle, and fine resolutions. Con-
tinuous functions can than be applied to derive results for
intermediate resolutions, as required.

Also, if a computation must be done, then it might be
advantageous to also compute results for other nearby
parameters. For example, if a particular input parameter has

US 6,553,394 Bl

5

a value of 0.5, it might also be efficient to compute the
memoized data for the range [0.4,0.6] at the same time,
because, for many computations in the continuous domain,
coherency of input parameters is frequently observed. Also,
for many computations, determining n results does not
increase the compute time by a factor of n, but rather, by a
factor that is much smaller than n. Therefore, in the long
term, when millions of computations need to be performed
in a continuous parameter domain, the extra computation in
anticipation of needing the results will pay off.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications may be
made within the spirit and scope of the invention. Therefore,
it is the object of the appended claims to cover all such
variations and modifications as come within the true spirit
and scope of the invention.

We claim:

1. A method for operating a computing device to obtain a
computation result, comprising the steps of:

providing a set of input parameters;

determining if a memo contains results of a computation

on sets of memoized parameters near the set of input
parameters; and

if true, reconstructing the computation for the set of input

parameters using the results of the computations on the
sets of memoized parameters near the set of input
parameters.

2. The method of claim 1 further comprising the steps of:

if false, performing the computation using the set of input

parameters;

memoizing a result of the computation on the set of input

parameters; and

providing the result of the computation on the set of input

parameters.

3. The method of claim 2 further comprising the steps of:

performing the computation using a plurality of sets of

input parameters;

memoizing a plurality of results of the computation on the

plurality of sets of input parameters, wherein the plu-
rality of sets of input parameters are coherently related.

4. The method of claim 1 wherein the reconstructing
applies a continuous function on the results of the compu-
tation on sets of memoized parameters near the set of input
parameters.

5. The method of claim 4 wherein the continuous function
interpolates the results of the computation on sets of
memoized parameters near the set of input parameters.

6. The method of claim 1 further comprising the steps of:

partitioning the computation into a plurality of partial

computations; and

memoizing partial results of at least one of the partial

computations.

7. The method of claim 1 wherein the memo is partitioned
into a plurality of tiles for accessing.

8. The method of claim 7 wherein the tiles are accessed
using a least recently used caching algorithm.

9. The method of claim 1 wherein the memo is maintained
at multiple levels of resolution.

10. A method of operating a computing device to obtain
a computation result, comprising:

storing at least one memo, each memo including results of

a computation for an associated respective set of
memoized parameters;

entering a set of input parameters;

5

15

20

25

30

35

40

45

50

55

60

65

6

determining that the respective set of memoized param-
eters associated with one of the stored at least one
memo is near the entered set of input parameters; and

reconstructing a result of the computation for the entered
set of input parameters based on the respective set of
memoized parameters associated with the one stored
memo.

11. A method according to claim 10, wherein the at least
one memo is a plurality of memos, and further comprising:

generating each of the plurality of memos by memoizing

the results of the computation for the respective set of
memoized parameters associated with that memo.

12. A method according to claim 10, wherein the at least
one memo is a plurality of memos, and further comprising:

entering another set of input parameters;

determining that none of the sets of memoized parameters

associated with the stored plurality of memos is near
the entered other set of input parameters;

computing a result of the computation for the entered

other set of input parameters;

generating another memo by memoizing the computed

results of the computation for the entered other set of
input parameters; and

storing the generated other memo with the plurality of

memos.

13. A method according to claim 10, wherein:

the result of the computation is reconstructed for the

entered set of input parameters based on the respective
set of memoized parameters associated with the one
stored memo by application of a continuous function.

14. A method according to claim 13, wherein the con-
tinuous function is one of a linear function and a non-linear
function.

15. A method according to claim 13, wherein the con-
tinuous function is a interpolation function, an exponential
function, a logarithmic function, and a Gaussian function.

16. A method according to claim 10, wherein the at least
one memo is a plurality of memos, and further comprising:

partitioning results of a complex computation for a plu-

rality of the respective sets of memoized parameters;
and

generating each of the plurality of memos by memoizing

the partitioned results of the complex computation for
one of the plurality of respective sets of memoized
parameters.

17. A method according to claim 10, wherein:

the at least one memo is a plurality of memos; and

reducing a number of the stored plurality of memos based

on a least recently used algorithm.
18. A method according to claim 10, wherein:
the at least one memo is stored at a first resolution and at
a second resolution different than the first resolution;

the entered set of input parameters correspond to a third
resolution different than the first and the second reso-
lution; and

the result of the computation for the entered set of input

parameters corresponding to the third resolution is
reconstructed based on the respective set of memoized
parameters associated with the one stored memo at both
the first resolution and second resolution.

19. A method according to claim 10, wherein the at least
one memo is a plurality of memos, and further comprising:

entering another set of input parameters;

determining that none of the sets of memoized parameters

associated with the stored plurality of memos is near
the entered other set of input parameters;

US 6,553,394 Bl

7 8
identifying a further set of input parameters coherently input parameters and a second other memo by memoiz-
related to the entered other set of input parameters; ing the computed results of the computation for the
computing a result of the computation for the entered identified further set of input parameters; and
other set of input parameters and for the identified storing the generated first and the generated second other
further set of input parameters; memos with the plurality of memos.

generating first other memo by memoizing the computed
results of the computation for the entered other set of ok k& %

	Bibliography
	Abstract
	Drawings
	Description
	Claims

