US008107729B2

a2 United States Patent (0) Patent No.. US 8,107,729 B2
Perry et al. 45) Date of Patent: Jan. 31, 2012
(54) METHOD FOR IMPROVING CHARACTER (56) References Cited
OUTLINES USING MULTIPLE ALIGNMENT
ZONES U.S. PATENT DOCUMENTS
5,155,805 A 10/1992 Kaasila
(75) Inventors: Ronald N. Perry, Cambridge, MA (US); 5,280,576 A % 1/1994 €Ca0 .o 345/469
Eric Chan, Belmont, MA (US) 5,355,449 A : 10/1994 Lung et al._ 345/467
5,633,991 A 5/1997 Hakaridani et al. 358/1.11
% o .
(73) Assignee: Mitsubishi Electric Research cited by examiner
Laboratories, Inc., Cambridge, MA Primary Examiner — Alex Liew
(as) (74) Attorney, Agent, or Firm — Dirk Brinkman; Gene
Vinokur
(*) Notice: Subject. to any disclaimer,. the term of this (57) ABSTRACT
{)Ja.tse.né. 11552)((1?)31?2 6%r dz(;3£5ted under 35 A method aligps a character to a sgmpling grid of an image,
where an outline of the character is specified by input pen
commands. Points and contours of the input pen commands
(21) Appl. No.: 12/359,913 are determined. An orientation of each contour is determined.
A first directed acyclic graph (DAG) is constructed indicating
(22) Filed: Jan. 26, 2009 a hierarchical relationship of related contours. Radicals are
determined using the first DAG. Simple segments of the con-
(65) Prior Publication Data tours are determined and merged independently for each radi-
cal. Segment pairs and their hinted coordinates are deter-
US 2010/0189353 Al Jul. 29,2010 mined. The segment pairs are sorted and a second DAG is
constructed for the sorted segment pairs. Collisions between
(51) Int.ClL the segment pairs are resolved using the second DAG. The
GO6K 9/00 (2006.01) segments pairs, x-free points, and y-free points are fitted to
(52) US. €L oo 382/181 the sampling grid independently for each radical and a result
(58) Field of Classification Search 382/181-231 Of the fitting is stored in output pen commands.

See application file for complete search history.

212

212

211

10 Claims, 8 Drawing Sheets

[
—

215

;

[]
]

U.S. Patent

Jan. 31, 2012

Sheet 2 of 8

A \
,,,,,,,,,,,,,, SE1 S .
... A EIEC o U U A A £
““““““““““““““ AESEE F NS R]

SNV

N
\

e NN

Multiple
Alignment

Prior Art

US 8,107,729 B2

Zones

No
Alignment

Fig. 1B

US 8,107,729 B2

Sheet 3 of 8

Jan. 31, 2012

U.S. Patent

ve 'bi4
sjuiod |«
e Lz
WFN wu—cht_@@w S|edlpel SINOJUOD e
pabiaw b)
Aele b
b GLe Z1Z
_ 7 Lic sda)s
Aesie slied 9 S sjuswba v & SJINOJU0D 2
sjuswbos s|eaipel uone}uslo
ul siied e Sjudwbos a|dwis %9 sjulod
al0)s auIwId)dp obiaw auIwLId)dp auluLIzep ouluLIep auIwId)dp
A b A b b b b b A
homb 90¢ G0¢C v0¢c €0¢ A1r4 (14
SPUBLLWIOD
sswbas ova | G€C uad
w:m% o|dwis ud indui
Jjuswbas b b i
B 0Lz €12
8Le

UONBIUSLIO |e

B

vic

US 8,107,729 B2

Sheet 4 of 8

Jan. 31, 2012

U.S. Patent

ac

SpUBWILOD

uad
ndino

A 4

Japual

14214

€9¢

SpueWIWIOD
uad
0} SpPJ009d
pajuly

Adoo @_\U

; A

€ce

Aelle

L

sjulod 2944
A pue x
M pub

siied
sjuswbos
W pub

‘B4

(XA4

Aelle
pauos

114

Aedie

sdays

slled
juswbas
Buipijiod
Jo9)9p

sied
juswbos

PIy2
Ayyuapi

juswbas

b6

siied

Jos

pajuly

8

$9)eulpiood

aulwaaep

b A

sjeolipel

S

B

14

[A 14

b A

19¢

b:

09¢

B

6G9¢

ovd

(444
.

B

8G¢

$8}eUIpI00D

pajuly

D)

0ce

U.S. Patent Jan. 31, 2012 Sheet 5 of 8 US 8,107,729 B2

~
_/-—-
N
~
N
~
\/
N "
\U L
fr—n —a L . ¥
N (3]
—a I—Ia E L . o
U\

U.S. Patent Jan. 31, 2012 Sheet 6 of 8 US 8,107,729 B2

Fig. 4

U.S. Patent Jan. 31, 2012 Sheet 7 of 8 US 8,107,729 B2

U.S. Patent Jan. 31, 2012 Sheet 8 of 8 US 8,107,729 B2

US 8,107,729 B2

1
METHOD FOR IMPROVING CHARACTER
OUTLINES USING MULTIPLE ALIGNMENT
ZONES

RELATED PATENT APPLICATIONS

The following Patent Applications are all related, co-filed,
and incorporated into each other: U.S. Non-Provisional
patent application Ser. No. 12/359,913, “Method for Improv-
ing Character Outlines Using Multiple Alignment Zones,”
filed by Perry et al. on Jan. 26, 2009; U.S. Non-Provisional
patent application Ser. No. 12/359,882, “Method for Improv-
ing Uniform Width Character Strokes Using Multiple Align-
ment Zones,” filed by Perry et al. on Jan. 26, 2009; and U.S.
Non-Provisional patent application Ser. No. 12/359,819
“Method for Converting Outline Characters to Stylized
Stroke Characters,” filed by Jakubiak et al. on Jan. 26, 2009.

FIELD OF THE INVENTION

The invention relates generally to rendering characters,
and more particularly to grid aligning characters represented
by outlines.

BACKGROUND OF THE INVENTION

Grid Fitting

Rendering characters or glyphs for display and printing is
problematic, particularly if the characters are complex. This
is particularly true for Chinese, Japanese, and Korean (CJK)
character sets, see FIG. 1A. The characters shown are repre-
sented by outlines as described in the TrueType Reference
Manual, Apple Computer, Inc. It is an object of the invention
to automatically align the outlines to a sampling grid (e.g., a
pixel or sub-pixel grid) for the purpose of rendering, see the
related Applications.

Hints

Hints are a set of rules or procedures stored with each glyph
to specify how the glyph should be modified during rendering
to preserve features such as symmetry, stroke weight, and a
uniform appearance across all the glyphs in a typeface. Hint-
ing requires aligning edges of characters to the sampling grid.
At small screen sizes, with or without antialiasing, hinting is
critical for producing clear and legible text for human readers.
Hinting can be manual, automatic, or combinations thereof.

Manual hinting is labor intensive and expensive. For
example, developing a well-hinted typeface for a Japanese or
Chinese font, which can have more than ten thousand glyphs,
can take years. Because the focus of hinting is on improving
the rendering quality of body type, the hints tend to be inef-
fective for type placed along arbitrary paths and for animated
type.

Current methods for automatic hinting produce reasonable
results for simple scripts such as Latin, but are inadequate for
complex scripts such as Chinese and Japanese. Consequently,
there is a need for an automatic hinting method that can
effectively handle complex glyphs. With automatic hinting,
labor cost is eliminated and font size is significantly reduced
because manual hints, which are stored in a font file, are no
longer needed.

SUMMARY OF THE INVENTION

A method aligns a character to a sampling grid of an image,
where an original path tracing an outline of the character is
specified by input pen commands having original coordi-
nates. Points and contours of the input pen commands are

20

25

30

35

40

45

50

55

60

65

2

determined. An orientation of each contour is determined. A
first directed acyclic graph (DAG) is constructed indicating a
hierarchical relationship of related contours. Radicals of a
group of related contours are determined using the first DAG.
Simple segments of the contours are determined. The simple
segments are merged independently for each radical. Seg-
ment pairs for the merged segments are determined. Hinted
coordinates for the segment pairs are determined. The seg-
ment pairs are sorted and a second DAG is constructed for the
sorted segment pairs. Collisions between the segment pairs
are resolved using the second DAG. x-free points and y-free
points are determined for each radical. The segments pairs,
the x-free points, and the y-free points are fitted to the sam-
pling grid independently for each radical and a result of the
fitting is stored in output pen commands having the hinted
coordinates thereby aligning the outline of the character to the
sampling grid of the image.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a diagram of outline characters to be aligned
according to embodiments of the invention;

FIG. 1B depicts sampling grids with comparative align-
ment of a character;

FIGS. 2A and 2B are a flow diagram of a method for
aligning outline characters according to embodiments of the
invention;

FIG. 3 is a diagram of an outline character with points and
contours according to embodiments of the invention;

FIG. 4 is a diagram of contours grouped into radicals
according to embodiments of the invention; and

FIGS. 5A and 5B are diagrams of horizontal and vertical
segment pairs according to embodiments of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Alignment and Grid Fitting

FIG. 1B shows a Chinese character on a sampling grid with
no alignment 111 and alignment 112 according to embodi-
ments of the invention. Because the invention detects and
aligns multiple zones in a character, the method is called
multiple alignment zones (MAZ).

As shown in FIGS. 2A-2B, a method for aligning charac-
ters to a sampling grid (e.g., a pixel or sub-pixel grid of an
image to be displayed on a screen) takes as input 213 pen
commands that trace an outline of the character. The method
modifies original coordinates of the pen commands to
“hinted” coordinates.

Paths

Outlines of characters to be rendered are represented by a
path. The path according to embodiments of the invention is
composed of a sequence of pen commands, e.g., moveto,
lineto, and curveto, which define an outline for a character,
see TrueType Reference Manual, Apple Computer, Inc. The
path representation enables arbitrary scaling, rotating, and
other transformations.

The sequence of pen commands specify the movement and
drawing of a virtual pen tracing the outline, and allow both
line segments and Bézier curve segments to be drawn. The
endpoints and control vertices of each segment are specified
in floating point image units.

Example pen commands follow; note that all coordinates
(i.e., X, y, cx, and cy) are specified in floating point image
units:

moveto X y—Starts a new path (i.e., a new contour). This
command sets the current point to (X,y).

US 8,107,729 B2

3

lineto x y—Appends a straight line segment to the current
path (i.e., the current contour). The line segment extends from
the current point to (X,y). After constructing the line segment,
(x,y) becomes the new current point.

curveto cx cy X y—Appends a quadratic Bezier curve seg-
mentto the current path (i.e., the current contour) between the
current point and (x,y) using (cx,cy) as the Bezier control
point. After constructing the curve segment, (x,y) becomes
the new current point.

The path follows the TrueType convention for rendering
characters, see U.S. Pat. No. 5,155,805, “Method and appa-
ratus for moving control points in displaying digital typeface
on raster output devices”, issued to Kaasila on Oct. 13, 1992,
and incorporated herein by reference.

Overview of Alignment Method

The input 213 to the method for multiple alignment zone
(MAZ) detection and grid fitting is a sequence of pen com-
mands representing an outline-based character and pixels per
em (ppem), the number of pixels per em to be used for
rendering the character, i.e., the scale of the character. The
method aligns the coordinates of the pen commands to the
sampling grid, i.e., the pen commands are automatically
hinted.

The following definitions and terms are organized into
several categories to facilitate comprehension of this descrip-
tion of the invention.

Point

A “point” is a two-dimensional set of coordinates (X, y). An
“on-curve point” is a point that lies on the outline of an
outline-based character. An “off-curve point” is a point that
may or may not lie on the outline of an outline-based charac-
ter, such as the control point for a quadratic Bézier curve
segment.

The “original x coordinate” and the “original y coordinate”
of a point P are the x and y coordinates of the point P in
real-valued image coordinates before grid fitting is applied,
respectively. The “hinted x coordinate” and the “hinted y
coordinate” of the point P are the x and y coordinates of the
point P in real-valued image coordinates after grid fitting is
applied, respectively.

The “absolute difference” between two numerical values a
and b is la-bl i.e., the absolute value of the difference (a-b).

The “original x-distance” between two points P1 and P2 is
the absolute difference between the original x coordinate of
point P1 and the original x coordinate of point P2. The “origi-
nal y-distance” between two points P1 and P2 is the absolute
difference between the original y coordinate of the point P1
and the original y coordinate of P2.

Contour and Radical

A “contour” C represents an ordered sequence of points P1,
P2,...,P{n}, where nis two or greater. The contour defines
a closed path of the outline-based character. Point P{i} “pre-
cedes” point P{j} if i<j. Similarly, P{i} “follows” point P{j}
if i>j. Two points P{i} and P{i+1} are “consecutive.” Point
P{i} “immediately precedes” point P{i+1}, and point P{i+1}
“immediately follows” point P{i}. Thus, the sequence of
points implies an orientation of the contour.

An “outer contour” is a contour that defines the outer
boundary of a filled region of an outline-based character, e.g.,
the outer contour in the letter ‘O’. An “inner contour” is a
contour that defines the inner boundary of a filled region of an
outline-based character, e.g., the inner contour in the letter
‘0.

A “bounding box” of a non-degenerate contour C is a
two-dimensional rectangle with the smallest area, determined
using the original coordinates, which contains all of the points
comprising the contour C. The “bounding box” of a degen-

20

25

30

35

40

45

50

55

60

65

4

erate contour C, i.e., a contour whose points are collinear, is
the shortest line segment that contains all of the points com-
prising the contour C.

A contour C is “oriented clockwise” if the points that define
C’s closed path follow a clockwise direction when traversing
the closed path in a sequential order. Similarly, the contour C
is “oriented counterclockwise” if the points that define C’s
closed path follow a counterclockwise direction when tra-
versing the closed path in the sequential order.

Let P and C be contours. Contour P is the “parent” of
contour C if and only if P is the contour with the smallest
bounding box, measured by area, that contains C’s bounding
box. If P exists, then C is a “child” of P. If no such P exists,
then C has no parent contour. Contours that have no parent
contours are called “root contours”. All other contours (i.e.,
contours that do have parent contours) are called “internal
contours”. A contour may have at most one parent contour.

Let A and D be contours. Contour D is a “descendant” of A
if and only if (1) D is a child of A, or (2) there exists some
ordered sequence of contours C1, C2, . .., C{n}, where n is
greater than 1, such that D is a child of C1, C{i} is a child of
C {i+1}, where i is an integer that lies in the range [1, n—1],
and C{n} is a child of A. If D is a descendant of A, then A is
an “ancestor” of D.

A “radical”is aset of related contours R, C1,C2, ..., C{n},
where n is greater than or equal to zero, defined by a single
root contour R and all of R’s descendants, i.e., each C{i} isa
descendant of R.

Simple Segment

A “horizontal simple segment” H consists of two consecu-
tive points P1 and P2 in a contour such that P1°s original y
coordinate is approximately equal to P2’s original y coordi-
nate. The original y coordinates of P1 and P2 are considered
approximately equal if their absolute difference is less than a
pre-defined constant “EQUAL_EPS”, where EQUAL_EPS
is specified in real-valued image units. P1 is called the “first
point” in the segment H, and P2 is called the “second point”
in H.

A “vertical simple segment” V consists of two consecutive
points P1 and P2 in a contour such that P1’s original x coor-
dinate is approximately equal to P2’s original x coordinate.
The original x coordinates of P1 and P2 are considered
approximately equal if their absolute difference is less than
EQUAL_EPS units. P1 is called the “first point” in the seg-
ment V, and P2 is called the “second point” in V.

The general term “simple segment” refers to either a hori-
zontal simple segment or a vertical simple segment A hori-
zontal simple segment H is oriented from “left to right” if the
original x coordinate of H’s first point is less than the original
x coordinate of H’s second point. Segment H is oriented from
“right to left” if the original x coordinate of H’s first point is
greater than or equal to the original x coordinate of H’s
second point. Segment H is “increasing” if segment H is
oriented from left to right and “decreasing” if segment H is
oriented from right to left.

A vertical simple segment V is oriented from “bottom to
top” if the original y coordinate of V’s first point is less than
the original y coordinate of V’s second point. V is oriented
from “top to bottom” if the original y coordinate of Vs first
point is greater than or equal to the original y coordinate of
V’s second point. V is “increasing” if V is oriented from
bottom to top and “decreasing” if V is oriented from top to
bottom.

Opposite Orientation

As shown in FIG. 5A, a pair 218 of horizontal simple
segments H1 and H2 have “opposite orientations™ if either:

US 8,107,729 B2

5

(1) H1 is oriented from left to right and H2 is oriented from
right to left, or (2) H1 is oriented from right to left and H2 is
oriented from left to right.

A pair of vertical simple segments V1 and V2 have “oppo-
site orientations” if either: (1) V1 is oriented from bottom to
top and V2 is oriented from top to bottom, or (2) V1 s oriented
from top to bottom and V2 is oriented from bottom to top.

Length

The “length” of a horizontal simple segment H is the abso-
lute difference between the original x coordinate of H’s first
point and the original x coordinate of H’s second point. The
“length” of a vertical simple segment V is the absolute dif-
ference between the original y coordinate of V’s first point
and the original y coordinate of V’s second point.

Slope

The “original slope” of a simple segment S is the ratio
dy/dx, where dy=y2-y1, dx=x2-x1, y1 is the original y coor-
dinate of S’s first point, y2 is the original y coordinate of S’s
second point, x1 is the original x coordinate of S’s first point,
and x2 is the original x coordinate of S’s second point. A
vertical simple segment whose first point and second point
have identical original x coordinates has an undefined origi-
nal slope, because the denominator dx is zero.

Merged Segment

A “horizontal merged segment” consists of one or more
distinct horizontal simple segments H1,H2, .. ., H{n}, where
nZ1, which satisty all three of the following conditions: (1)
H1...,H{n} all have the same orientation, (2) H1 ..., H{n}
are all contained in the same radical, and (3) the original y
coordinates of the first points in H{i} and H{j}, where i and j
are any integers in the range [1, n], differ by less than
(2¥*EQUAL_EPS) units in real-valued image coordinates.

Because the original y coordinates of the first and second
points in a horizontal simple segment differ by less than
EQUAL_EPS units in real-valued image coordinates, condi-
tion (3) implies that the original y coordinates of the second
points in H{i} and H{j}, where i andj are any integers that lie
in the range [1, n], differ by less than 3*EQUAL_EPS) units
in real-valued image coordinates.

A “vertical merged segment” consists of one or more dis-
tinct vertical simple segments V1, V2, ... V{n}, where n=1,
that satisfy all three of the following conditions: (1) V1. ..,
V{n} all have the same orientation, (2) V1. ..,V{n} are all
contained in the same radical, and (3) the original x coordi-
nates of the first points in V{i} and V{j}, where i and j are any
integers that lie in the range [l,n], differ by less than
(2¥*EQUAL_EPS) units in real-valued image coordinates.

Because the original x coordinates of the first and second
points in a vertical simple segment differ by less than EQUA-
L_EPS units in real-valued image coordinates, condition (3)
implies that the original x coordinates of the second points in
V{i} and V{j}, where i and j are any integers that lie in the
range [1, n], differ by less than (3*EQUAL_EPS) units in
real-valued image coordinates.

The general term “merged segment” refers to either a hori-
zontal merged segment or a vertical merged segment.

A point P is contained in a merged segment M if: (1) point
P is contained in a simple segment S, and (2) S is contained in
M.

Let H be a horizontal merged segment whose minimum
original x coordinate over all points in segment H is xMin,
and whose maximum original x coordinate over all points in
segment H is xMax. The “length” of segment H is the differ-
ence between xMax and xMin, i.e., xMax—-xMin.

Let V be is a vertical merged segment whose minimum
original y coordinate over all points in V is yMin, and whose
maximum original y coordinate over all points in V is yMax.

20

25

30

35

40

45

50

55

60

65

6

The “length” of segment V is the difference between yMax
and yMin, i.e., yMax-yMin.

The “original slope” of a merged segment M is the set of
original slopes s1, s2, . . ., s{n} where n=1 and s{i} is the
original slope of the ith simple segment in M.

Let H1 and H2 be horizontal merged segments with lengths
L1 and L2, respectively. Let L be the maximum of .1 and [.2.
Informally, the “overlap ratio” between H1 and H2 is the
amount of horizontal overlap between H1 and H2 divided by
the length of the longer segment. Formally, the “overlap ratio”
between H1 and H2 is defined as MIN(xMax1, xMax2)-
MAX(xMinl, xMin2))/L., where xMinl is the minimum
original x coordinate over all points in H1, xMin2 is the
minimum original X coordinate over all points in H2, xMax1
is the maximum original x coordinate over all points in H1,
and xMax2 is the maximum original x coordinate over all
points in H2.

Let V1 and V2 be vertical merged segments with lengths
L1 and L2, respectively. Let L be the maximum of .1 and [.2.
Informally, the “overlap ratio” between V1 and V2 is the
amount of vertical overlap between V1 and V2 divided by the
length of the longer segment. Formally, the “overlap ratio”
between V1 and V2 is defined as MIN(yMax1, yMax2)-
MAX(yMinl, yMin2))/L, where yMinl is the minimum
original y coordinate over all points in V1, yMin2 is the
minimum original y coordinate over all points in V2, yMax1
is the maximum original y coordinate over all points in V1,
and yMax2 is the maximum original y coordinate over all
points in V2.

The “first point” in a merged segment M is the first point in
the first simple segment in M. Merged segments are repre-
sented as linked lists of simple segments. The first simple
segment in M is the first element of M’s linked list of simple
segments.

Segment Pair

As shown in FIG. 5A, a “horizontal segment pair” 218 is a
pair of two distinct horizontal merged segments 218 H1 and
H2, written as {H1, H2}, such that: (1) H1 and H2 are con-
tained in the same radical, (2) H1 and H2 have opposite
orientations, and (3) the original y coordinate of H1’s first
point is less than the original y coordinate of H2’s first point.
H1 is called the “minimum paired segment” of the segment
pair {H1, H2} and H2 is called the “maximum paired seg-
ment” of the segment pair {H1, H2}. H1 and H2 are “paired”
with each other.

A “vertical segment pair” is a pair of two distinct vertical
merged segments V1 and V2, written as {V1, V2}, such that:
(1)V1 and V2 are contained in the same radical, (2) V1 and V2
have opposite orientations, and (3) the original x coordinate
of V1’s first point is less than the original x coordinate of V2’s
first point. V1 is called the “minimum paired segment” of the
segment pair {V1,V2} and V2 is called the “maximum paired
segment” of the segment pair {V1, V2}. V1 and V2 are
“paired” with each other.

The general term “segment pair” 512 refers to either a
horizontal segment pair or a vertical segment pair.

The term “paired segment™ refers to either one of the two
merged segments in a segment pair.

An “unpaired segment” is either: (1) a horizontal merged
segment that is not paired with any other horizontal merged
segment, or (2) a vertical merged segment that is not paired
with any other vertical merged segment.

Let segment H be a horizontal merged segment whose
minimum original y coordinate over all points in segment H is
yMin and whose maximum original y coordinate over all

US 8,107,729 B2

7

points in segment H is yMax. The “original middle y coordi-
nate” of segment H is the average of yMin and yMax, i.e.,
0.5*(yMin+yMax).

Let segment V be a vertical merged segment whose mini-
mum original X coordinate over all points in V is xMin and
whose maximum original x coordinate over all points in V is
xMax. The “original middle x coordinate” of V is the average
of xMin and xMax, i.e., 0.5*(xMin+xMax).

The “first pair width” of a horizontal segment pair {H1,
H2} is the difference between the original y coordinate of
H2’s first point and the original y coordinate of H1’s first
point. The “first pair width” of a vertical segment pair {V1,
V2} is the difference between the original x coordinate of
V2’s first point and the original x coordinate of V1’s first
point.

The “original pair width” of a horizontal segment pair {H1,
H2} is the difference between H2’s original middle y coor-
dinate and H1’s original middle y coordinate. The “original
pair width” of a vertical segment pair {V1, V2} is the differ-
ence between V2’s original middle x coordinate and V1’s
original middle x coordinate.

A segment pair P1 is “thicker” than a segment pair P2 if
P1’s first pair width is greater than P2’s first pair width. P1 is
“thinner” than P2 if P1’s first pair width is less than P2’s first
pair width.

Grid Fitting Terminology

A “half-integer” is an element n of the set of real numbers
such that n=k+0.5 for some integer k, e.g., -2.5, -1.5, -0.5,
0.5, 1.5, 2.5, and 3.5 are all half-integers.

An “integer pixel grid” is the set of ordered pairs (x, y) of
real numbers x and y such that at least one element of (x, y) is
an integer. For example, (0, 0), (1.5, 0), and (1.97, 3) lic on the
integer pixel grid, but (1.7, 11.2) does not. Geometrically, the
integer pixel grid is a grid comprising the set of integer hori-
zontal lines, e.g., y=-2, y=-1, y=0, y=1, and y=2, and the set
of integer vertical lines, e.g., x=-2, x=-1,x=0, x=1, and x=2.

The “half-integer pixel grid” is the set of ordered pairs (x,
y) of real numbers x and y such that at least one element of (x,
y) is a half-integer. For example, (0, 0.5), (1.5, 0), and (1.97,
2.5) lie on the half-integer pixel grid, but (1.7, 11.2) does not.
Geometrically, the half-integer pixel grid is a grid comprising
the set of half-integer horizontal lines, e.g., y=—-2.5, y=-1.5,
y=-0.5, y=0.5, y=1.5, and y=2.5, and the set of half-integer
vertical lines, e.g., x=-2.5, x=-1.5,x=-0.5,%x=0.5,x=1.5, and
x=2.5.

Collision Terminology

Two horizontal segment pairs H1={A1, B1} and H2={A2,
B2} “overlap” if there exists a vertical line V such that V
intersects either Al or B1, and V intersects either A2 or B2.
Similarly, two vertical segment pairs V1={Al, B1} and
V2={A2, B2} “overlap” if there exists a horizontal line H
such that H intersects either A1 or B1 and H intersects either
A2 or B2.

The “original coordinate of a horizontal segment pair”
H={H1, H2} is the original middle y coordinate of H1. Simi-
larly, the “original coordinate of a vertical segment pair”
V={V1,V2} is the original middle x coordinate of V1.

The “hinted coordinate of a horizontal segment pair”
H={H1, H2} is the y coordinate of H1 in real-valued image
coordinates after grid fitting has been applied. The “hinted
coordinate of a vertical segment pair” V={V1, V2} is the x
coordinate of V1 in real-valued image coordinates after grid
fitting has been applied.

Let P1 and P2 be segment pairs with original coordinates
cl and ¢2, respectively. P1 and P2 are in “ascending order” if
cl is less than or equal to ¢2 and in “descending order” if c1
is greater than or equal to c2. The terms “ascending order” and

20

25

30

45

60

8

“descending order” apply generally to any number of seg-
ment pairs, e.g., four segment pairs.

Let P1, P2, and P3 be segment pairs in ascending order. P2
lies “between” P1 and P3 if and only if: (1) P1 overlaps P2,
and (2) P2 overlaps P3.

A segment pair C is a “child” or “child segment pair” of a
segment pair P if and only if all three of the following condi-
tions are satisfied: (1) C’s original coordinate=P’s original
coordinate, (2) C overlaps P, and (3) no segment pair lies
between C and P.

Segment pair P is the “parent” or “parent segment pair” of
a segment pair C if and only if C is the child of P. If P has
multiple child segment pairs, the child segment pairs are
referred to as the “children” of P.

A segment pair D is a “descendant” of a segment pair P if
and only if: (1) D is a child of P, or (2) there exists some
ordered sequence of segment pairs P1, P2, . . ., Pn, where
nz1, such that D is a child of P1, P{i} is a child of P{i+1},
where 1=i<n, and Pn is a child of P. If D is a descendant of P,
then P is an “ancestor” of D.

A “segment pair tree” is the set of segment pairs defined by
a segment pair P, and all descendants of P. The segment pair P
is the “root segment pair” of the segment pair tree. The seg-
ment pair tree forms a directed acyclic graph (DAG) of seg-
ments pairs.

A segment pair P is “rounded up” if P’s hinted coordinate
h is equal to the minimum integer greater than P’s original
coordinate o minus 0.5, i.e., the segment pair P is rounded up
if h is equal to floor(0-0.5)+1. The function floor(argument)
produces the largest integer less than or equal to (argument).

Similarly, P is “rounded down” if P’s hinted coordinate h is
equal to the maximum integer not greater than P’s original
coordinate o minus 0.5, i.e., the segment pair P is rounded
down if h is equal to floor(0-0.5).

Rendering is performed with samples located at pixel cen-
ters. Therefore, the method described below performs grid
fitting by aligning coordinates to half-integers, e.g., 0.5, 1.5,
and 2.5. The unorthodox definitions of “rounded up” and
“rounded down” are due to this method’s use of integer coor-
dinates, instead of half-integer coordinates, to optimize per-
formance and to maximize code re-use between floating point
and fixed point implementations, see Steps 8 through 11
below.

A segment pair tree is rounded up if every segment pair in
the segment pair tree is rounded up. Similarly, a segment pair
tree is rounded down if every segment pair in the segment pair
tree is rounded down.

A segment pair P1 is “aligned” to another segment pair P2
if P1 has the same hinted coordinate as P2.

Let P1 and P2 be two segment pairs such that the hinted
coordinate of P1 is greater than the hinted coordinate of P2.
Let W be the original pair width of P2 in real-valued image
coordinates. Segment pairs P1 and P2 “collide” if: (1) they
overlap, and (2) their hinted coordinates differ by at most W
units in real-valued image coordinates.

P1 and P2 “barely collide” if: (1) they collide, and (2) their
hinted coordinates differ by exactly W units in real-valued
image coordinates.

Anchor Point Terminology

If P is a point contained in a horizontal paired segment H,
then point P is a “y-aligned” point. Otherwise, point P is a
“y-free” point.

IfP is a point contained in a vertical paired segment V, then
point P is an “x-aligned” point. Otherwise, point P is an
“x-free” point.

US 8,107,729 B2

9

Let contour C include a sequence of points P1, P2, . . .,
P{n}, where n=2. Let P{i} be an x-free point:

The “previous x anchor point” of P{i} is the first x-aligned
point found during a backwards traversal through the
sequence of points starting from P {i} and wrapping around
from P1 to P{n}, ie, P{i}, P{i-1}, . . ., P2, P1, P{n},
P{n-1}, . . ., P{i+1}. If contour C does not contain any
x-aligned points, then the previous x anchor point for P{i}
does not exist.

The “next x anchor point” of P{i} is the first x-aligned point
found during a forward traversal through the sequence of
points starting from P{i} and wrapping around from P{n} to
Pl,ie,P{i},P{i+1},...,P{n-1},P{n},P1,P2,... P{i-1}.
If the contour C does not contain any x-aligned points, then
the next x anchor point for P{i} does not exist.

Let contour C be a contour consisting of a sequence of
points P1, P2, . . ., P{n} where n=2. Let P{i} be a y-free
point:

The “previous y anchor point” of P{i} is the first y-aligned
point found during a backwards traversal through the
sequence of points starting from P{i} and wrapping around
from P1 to P{n}, ie, P{i}, P{i-1}, . . ., P2, P1, P{n},
P{n-1}, . . ., P{i+1}. If contour C does not contain any
y-aligned points, then the previous y anchor point for P{i}
does not exist.

The “next y anchor point” of P{i} is the first y-aligned point
found during a forward traversal through the sequence of
points starting from P{i} and wrapping around from P{n} to
Pl,ie,P{i},P{i+1},...,P{n-1},P{n},P1,P2,... P{i-1}.
If contour C does not contain any y-aligned points, then the
next y anchor point for P{i} does not exist.

The “original x-ratio” between an x-free point P, its previ-
ous x anchor point Al, and its next x anchor point A2 is the
ratio (px-x1)/(x2-x1), where px is P’s original x coordinate,
x1 is Al’s original x coordinate, and x2 is A2’s original x
coordinate. The original x-ratio is undefined if either of P’s
anchor points does not exist or if (x2-x1) is zero.

The “original y-ratio” between a y-free point P, its previous
y anchor point A1, and its next y anchor point A2 is the ratio
(py-y1)/(y2-y1), where py is P’s original y coordinate, y1 is
A1l’s original y coordinate, and y2 is A2’s original y coordi-
nate. The original y-ratio is undefined if either of P’s anchor
points does not exist, or if (y2-y1) is zero.

Linked Listed Terminology

The “head” and “tail” of a linear linked list L are the first
and last elements of L, respectively. An element E that is not
currently in L. can be “prepended” to L by making E the new
head of L. Similarly, E can be “appended” to L by making E
the new tail of L.

Alignment Method Strategy

The following general description applies to the method
described below:

The method is invoked dynamically during rendering, see
the related Applications. Therefore, the method is designed to
achieve a favorable balance between high quality, small
memory consumption, and computational efficiency. The
method can be invoked on any outline-based character, but it
is designed and optimized for CJK characters.

CJK outline-based characters are largely comprised of
horizontal and vertical features. Therefore, the method
detects horizontal and vertical features of the character and
aligns them to the sampling grid. These features are called
“segment pairs” in this description, see the Segment Pair
terminology section above for a precise definition.

The method does not align other features to the sampling
grid, e.g., curves or diagonal lines. Coordinates that are not
aligned to the sampling grid are instead hinted using interpo-

20

25

30

35

40

45

50

55

60

65

10

lation, see below for details. This overall strategy balances the
competing goals of high quality and high runtime perfor-
mance.

Performing automatic grid fitting for CIK outline-based
characters is challenging because of two competing goals:
contrast and consistency. High contrast can be achieved by
aligning both segments of a segment pair to the sampling grid,
thereby producing a horizontal or vertical feature with two
sharp edges.

High consistency can be achieved by preserving the origi-
nal pair widths of segment pairs during grid fitting so that
horizontal and vertical features appear to have consistent
stroke weights when rendered into the final image. These two
goals compete because aligning both segments of a segment
pair to the sampling grid generally requires modifying the
original pair width. Similarly, preserving the original pair
width generally prevents both segments of a segment pair
from being aligned to the sampling grid simultaneously.

Consistency is more important to the overall visual quality
of a rendered character than contrast, especially when mul-
tiple characters are viewed together on a single page of text. In
particular, it is often preferable to accept a slight reduction in
contrast, e.g., by aligning only one of the two segments in a
segment pair to the sampling grid, instead of aligning both
segments to the sampling grid, in exchange for a significant
increase in consistency, e.g., by preserving the original pair
widths of the segment pairs.

For this reason, the method generally preserves the original
pair widths of segment pairs during grid fitting, with the
following exception. Segment pairs that are relatively thin,
e.g., less than 1 pixel, are difficult to see when rendered.
Therefore, the method increases the original pair widths of
thin segment pairs by a ppem-dependent amount, thereby
increasing the visibility and contrast of thin features without
a discernible compromise in consistency.

At small to moderate ppems, e.g., 30 ppems and less,
aligning both segments of a segment pair to the sampling grid
generally leads to unattractive results and obvious inconsis-
tencies. Aligning both segments of a segment pair leads to
slightly better results at large ppems, e.g., 80 ppems and
greater. However, even at large ppems, there are cases where
consistency issues may arise in individual characters. For this
reason, the method never explicitly aligns both segments of a
segment pair to the sampling grid.

As shown in FIG. 2A, the method attempts to determine
202 the orientation of the outer contours in an outline-based
character, see Step 2 below. The orientation enables the
method to detect segment pairs accurately in subsequent
steps. The method assumes that all outer contours in the
outline-based character have the same orientation. If the out-
line-based character does not have this property, the method
may not detect segment pairs accurately.

As shown in FIG. 4, the method organizes contours into
groups called “radicals” 215. A radical is a group of spatially-
related components of an outline-based character, see the
Contour and Radical terminology section above for a formal
definition. The method performs feature detection separately
and independently for each radical, using independent align-
ment zones. This improves the accuracy of feature detection
by preventing segment pairs from forming between spatially-
distant regions of the character. There are no dependencies
between radicals during feature detection. Consequently,
hardware and multi-core implementations can perform fea-
ture detection within radicals completely in parallel.

The method detects and resolves “collisions” between seg-
ment pairs, thereby preventing important features from
becoming visually indistinguishable, see below for details.

US 8,107,729 B2

11

Collision resolution plays a significant role in the quality of
the results. The method uses a greedy method to resolve
collisions. This method is computationally efficient but may
not always find the optimal grid fitting configuration. In prac-
tice, however, the method produces high-quality results
across a wide range of characters. During collision resolution,
the method does not attempt to preserve the original spacing
or the original spacing proportions between segments pairs.

To improve consistency in appearance across multiple
characters, the method always aligns topmost and bottom-
most horizontal segment pairs to the nearest grid point. Simi-
larly, the method always aligns leftmost and rightmost verti-
cal segment pairs to the nearest grid point. This approach
prevents further grid fitting adjustments, e.g., due to collision
resolution, from affecting important horizontal and vertical
features at the edges of characters, resulting in better align-
ment of these features across multiple characters when
viewed together.

The method fits horizontal segment pairs and vertical seg-
ment pairs separately and independently. Because the method
contains no dependencies between horizontal segment pairs
and vertical segment pairs, hardware and multi-core imple-
mentations can perform grid fitting on horizontal segment
pairs and grid fitting on vertical segment pairs completely in
parallel.

The present method follows the TrueType convention for
rendering characters, where rendering is performed using
samples located at pixel centers. Therefore, the method per-
forms grid fitting by aligning coordinates to half-integers,
e.g., 0.5, 1.5, and 2.5. To optimize performance and to maxi-
mize code re-use between floating point and fixed point
implementations, Steps 8 through 11 of the method, see
below, perform grid fitting using the integer pixel grid.
Adjustments to the integer hinted coordinates to accommo-
date the half-integer sampling grid are performed in Step 12
of the method, see below.

Method Description

FIGS. 2A and 2B show, in greater detail, the steps of the
method for aligning contours of a character to multiple align-
ment zones according to embodiments of the invention.

Step 1. Determine 201 points 211 and contours 212 from
the input pen commands 213. FIG. 3 shows a character with
72 points and 5 contours.

Step 2. Determine 202 an orientation 214 of outer contours
in the character. The contours can be oriented clockwise or
counterclockwise. This determination is made by the follow-
ing steps:

Step 2a. Determine pMinY, the point in the character with
the minimum original y coordinate. The coordinate pMinY is
contained in an outer contour C of the character.

Step 2b. Compute the signed area A of the triangle defined
by the three points (pMinY, pMinYN, and pMinYP), where
pMinYN is the point immediately following pMinY and
pMinYP is the point immediately preceding pMinY.

Step 2c¢. If A is positive, contour C is oriented clockwise;
proceed with Step (24).

Step 2d. If A is negative, contour C is oriented counter-
clockwise; proceed with Step (24).

Step 2e. Otherwise, A is zero or approximately zero and
therefore the three points (pMinY, pMinYN, and pMinYP)
are collinear or approximately collinear. If pMinYN lies to
the left of pMinYP, then contour C is oriented clockwise;
proceed with Step (24).

Step 2. If pMinYN lies to the right of pMinYP, then con-
tour C is oriented counterclockwise; proceed with Step (2/).

Step 2g. pMinYN and pMinYP have identical original x
coordinates, so the character is degenerate around pMinY. It

20

25

30

35

40

45

50

55

60

65

12

is impossible to determine C’s orientation by examining the
three points pMinY, pMinYN, and pMinYP, so assume that
C’s orientation is clockwise.

Step 2/. Done.

The orientation of the contour C is assumed to be the
orientation of all outer contours in the character.

Step 3. Determine 203 radicals 215. FIG. 4 shows three
radicals 215 for the contours 212 of FIG. 3. Grid fitting is
done independently for each radical 215. A radical is a set of
contours containing a single root contour and all of its descen-
dents. Radicals are determined using the following two-steps:

Step 3a. Determine the parent of each contour. This step
effectively constructs a directed acyclic graph (DAG) 235 of
contours. In the DAG, each contour is linked to its parent.
Root contours do not have parents, i.e., they are the “topmost”
elements in the DAG.

Step 3b. Determine the radical that contains each contour.
Each contour [has a unique ancestor R that is a root contour.
Determine R by repeatedly following I’s parent link, i.e.,
I—=parent, [—=parent—parent, etc., until a contour is found
that has no parent. This contour is R. This step effectively
“flattens” the DAG hierarchy into two layers with root con-
tours in the “top” layer and internal contours in the “bottom”
layer.

Step 4. Determine 204 simple segments 216. Horizontal
simple segments and vertical simple segments are determined
by traversing the points 211, and by applying the definitions
of'a horizontal simple segment and a vertical simple segment
as described above.

Step 5. Determine 205, for each radical 215, merged seg-
ments 217. For each radical R 215, merge the horizontal
simple segments in R into horizontal merged segments by
applying the definition of a horizontal merged segment
described above. Similarly, for each radical R 215, merge the
vertical simple segments in R into vertical merged segments
by applying the definition of a vertical merged segment
described above. Merged segments are represented using
linked lists of simple segments. There is no significance to the
ordering of simple segments within these linked lists.

Step 6. For each radical R 215, determine 206 horizontal
segment pairs 218 from R’s horizontal merged segments and
determine 206 vertical segment pairs from R’s vertical
merged segments. FIG. 5A shows five pairs 218 of line seg-
ments 216, and FIG. 5B shows all the pairs 218 for one radical
215.

Horizontal segment pairs are determined using a brute-
force method that considers all possible horizontal segment
pairs {H1, H2}, where H1 and H2 are horizontal merged
segments in R. {H1, H2} is a valid segment pair if and only if
all of the following conditions are satisfied:

1. {H1, H2} must span a filled region of the character. This
occurs if either: (1) H1 is oriented from left to right and the
outer contours of the character are oriented counterclock-
wise, or (2) H1 is oriented from right to left and the outer
contours of the character are oriented clockwise. The orien-
tation of the outer contours of the character is determined
above in Step 2.

2. The first pair width of {H1, H2} must be at most
(MAX_WIDTH_FRAC*ppem) units in real-valued image
coordinates, where ppem is the user-specified number of pix-
els per em used to render the character and MAX_WIDTH_
FRAC is a specified pre-defined constant.

3. The overlap ratio between H1 and H2 must be at least
MIN_OVERLAP_RATIO, where MIN_OVERLAP_RATIO
is a specified pre-defined constant.

4. Let w be the first pair width of {H1, H2}. There cannot
exist a horizontal merged segment H3 in R such that the first

US 8,107,729 B2

13

pair width of {H3, H2} is less than w. Similarly, there cannot
exist a horizontal merged segment H3 in R such that the first
pair width of {H1, H3} is less than w. Intuitively, {H1, H2}
must be the thinnest horizontal segment pair over all possible
horizontal segment pairs containing either H1 or H2.

Vertical segment pairs are determined in the same manner
as for horizontal segment pairs, substituting x coordinates for
y coordinates.

Step 7. For each radical R 215, append 207 each horizontal
segment pair in R to an uninitialized horizontal segment pair
array 219. Similarly, for each radical R 215, append each
vertical segment pair in R to an uninitialized vertical segment
pair array.

Step 8. Determine 258 the hinted coordinate 220 of each
horizontal segment pair in the horizontal segment pair array
219 by computing the floor of its original coordinates. Simi-
larly, determine the hinted coordinate of each vertical seg-
ment pair in the vertical segment pair array by computing the
floor of'its original coordinates. The hinted coordinates of the
segment pairs determined in this step can be modified below
to resolve collisions, see Step 11.

Step 9. Sort 259 the horizontal segment pairs in the hori-
zontal segment pair array into ascending order, i.e., sort by
non-decreasing original coordinates. Similarly, sort the ver-
tical segment pairs in the vertical segment pair array into
ascending order, i.e., sort by non-decreasing original coordi-
nates. Thus, the array 221 is sorted.

Step 10. Identify 260 the child segment pairs of each hori-
zontal segment pair in the horizontal segment pair array and
construct a directed acyclic graph (DAG) 222. Similarly,
identify the child segment pairs of each vertical segment pair
in the vertical segment pair array and construct a correspond-
ing DAG. The DAGs are represented implicitly by linking
each segment pair to its child segment pairs.

The purpose of constructing these DAGs is to detect and
resolve collisions between segment pairs in Step 11. A colli-
sion between a segment pair P and a child segment pair C
cannot occur during collision resolution if the current hinted
coordinates 220 of P and C differ by more than W+2 pixels,
where W is equal to the width of C’s original pair rounded to
the nearest integer. Therefore, to improve runtime efficiency,
alink in the DAG is added between P and C if and only if their
hinted coordinates differ by (W+2) pixels or less.

Step 11. Detect 261 colliding segment pairs and resolve
collisions that occur in Step 8 using a greedy bottom-up
method. Visually, colliding segment pairs appear to be a
single thick segment pair, instead of two separate segment
pairs. Collisions can be resolved in some cases by adding +1
or -1 to the hinted coordinate of one of the segment pairs so
that the two segment pairs become one pixel farther apart, see
details below.

Collisions are resolved using a greedy method in which
each DAG of segment pairs determined in Step 10 is traversed
in a bottom-up order, i.e., from the bottommost descendants
to the topmost ancestors. Because the segment pairs are
sorted in ascending order in Step 9, this bottom-up traversal is
accomplished by visiting each segment pair in the segment
pair array, beginning with the first segment pair in the seg-
ment pair array and ending with the last segment pair in the
segment pair array.

Let M1 and M2 be the current hinted coordinates of the first
and last segment pairs in the segment pair array. To obtain
consistent alignment of important features across multiple
characters, all segment pairs whose current hinted coordi-
nates are equal to M1 will remain fixed at M1, i.e., these
segment pairs will not be affected by collision resolution.

20

25

30

35

40

45

50

55

60

65

14

Similarly, all segment pairs whose current hinted coordinates
are equal to M2 will remain fixed at M2.

For each segment pair P visited during a bottom-up tra-
versal of the segment pair array, apply the following steps:

Step 11a. If P’s current hinted coordinate is equal to M1,
then proceed to the next segment pair.

Step 1154. If P’s current hinted coordinate is equal to M2,
then apply the following steps for each child C of P that
collides with P:

Step 1151. If C barely collides with P, proceed to Step
(1152). Otherwise, proceed with Step (1154).

Step 1162. If C is rounded up and can be rounded down
without colliding with any of its children, then round down C
and proceed with Step (1155).

Example: If C’s original coordinate is 3.4, then C’s hinted
coordinate is normally “rounded up” to 3.0. “Rounding
down” instead produces the integer 2.0. Refer to the defini-
tions of “rounded up” and “rounded down” in the Collision
terminology section above. This step attempts to eliminate a
collision and always avoids introducing any new collisions.

Step 1153. If Cis rounded up and the segment pair tree with
root C can be rounded down without creating any collisions
whatsoever in the segment pair tree, then round down the
segment pair tree and proceed with Step (1155). This step
attempts to eliminate a collision and always avoids introduc-
ing any new collisions.

Step 1154. If P still collides with C, align C to P. For
example, if C’s hinted coordinate is 4.0, P’s hinted coordinate
is 5.0, and C’s pair width is 1.2 pixels, then align C to 5.0.

Step 1155. Done.

Step 11c. If P’s current hinted coordinate lies between M1
and M2, then apply the following steps for each child C of P
that collides with P:

Step 11c1. If C barely collides with P, proceed to Step
(112). Otherwise, proceed with Step (11¢5).

Step 11¢2. If C is rounded up and can be rounded down
without colliding with any of its children, then round down C
and proceed with Step (11¢6). For example, if C’s original
coordinate is 3.4, then C’s hinted coordinate is normally
“rounded up” to 3.0. “Rounding down” instead produces the
integer 2.0. Refer to the definitions of “rounded up” and
“rounded down” in the Collision terminology section above.
This step attempts to eliminate a collision and always avoids
introducing any new collisions.

Step 11¢3. If C is rounded up and the segment pair tree with
root C can be rounded down without creating any collisions
whatsoever in the segment pair tree, then round down the
segment pair tree and proceed with Step (11¢6). This step
attempts to eliminate a collision and always avoids introduc-
ing any new collisions.

Step 11c4. If P is rounded down, then round up P and
proceed with Step (11¢6). Example: If P’s original coordinate
is 5.8, then P’s hinted coordinate is normally rounded down to
5.0, 1.e., floor(5.8-0.5)=floor(5.3)=5.0. Rounding up instead
produces the integer 6.0. This step attempts to eliminate a
collision but may introduce a collision between P and a parent
of P. This potential collision will be treated when processing
the parent of P in a subsequent iteration of the bottom-up
traversal of the DAG.

Step 11¢5. Align P to C. For example, if C’s hinted coor-
dinate is 4.0 and P’s hinted coordinate is 5.0, then align P to
4.0.

Step 11¢6. Done, and collisions have been eliminated from
the array of segment pairs 223.

For Step 11, Steps (1152) through (11563) and Steps (11¢2)
through (11c4) attempt to round segment pairs C and P so that
they are atleast W+1 pixels apart, where W is C’s original pair

US 8,107,729 B2

15

width. However, there are some cases in which collisions
cannot be resolved by this method. Because C and P cannot be
visually distinguished in these cases, Steps (1154) and (11¢5)
align P and C, thereby simplifying the appearance of the
character by aligning two segment pairs to the same coordi-
nate. The difference between Step (1154) and Step (11¢5) is
that in the former step, C is aligned to P, whereas in the latter
step, P is aligned to C.

Step 12. Grid fit 262 each horizontal segment pair {S1, S2}
in the horizontal segment pair array 223:

Step 12a. Determine the original pair width w of {S1, S2}
in real-valued image coordinates.

Step 12b. Determine the adjusted pair width w' of {S1, S2}
as follows. Initialize w' to w. If w' is less than 0.5, then set w'
t0 0.5. If w' is less than 1.0, then set w'=w'+f*(1-w"), where
is the pair width adjustment factor. The value f'is computed as
(ppem™0.0625-0.875) and clamped to the range [0,1]. This
step increases the original pair width by a ppem-dependent
amount to increase the visibility and contrast of thin segment
pairs.

The pair width adjustment factor f lies in the range [0, 1]
and behaves as a linear ramp from 0, when ppem=14, to 1,
when ppem=30. Therefore, the pair width adjustment factor
is minimized at 14 ppems and maximized at 30 ppems. These
values were determined empirically to achieve a good bal-
ance between contrast and consistency.

Step 12¢. Grid fit the points of S1 and S2 as follows. Let
omy1 and omy2 be the original middle y coordinates of S1
and S2, respectively. The hinted y coordinate hy1 of S1 was
determined earlier by Step 8 and Step 11, see above.

Determine the hinted y coordinate hy2 of S2 by adding the
adjusted pair width, i.e., w' to the hinted y coordinate of S1,
ie., hyl.

For each point P contained in S1, determine P’s hinted y
coordinate by adding (hyl-omy1+0.5) to P’s original y coor-
dinate. This step effectively preserves the original slope of S1.
The additional delta of 0.5 causes point P to be aligned to the
half-integer pixel grid.

For each point P contained in S2, determine P’s hinted y
coordinate by adding (hy2-omy2+0.5) to P’s original y coor-
dinate. This step effectively preserves the original slope of S2.
The additional delta of 0.5 causes point P to be aligned to the
half-integer pixel grid.

Grid fit 262 each vertical segment pair in the vertical seg-
ment pair array using the same method described above for
horizontal segment pairs, substituting x coordinates for y
coordinates.

Step 13. For each radical R 215, perform grid fitting 263 on
the x-free points in R:

Step 13a. Letpoint P be an x-free pointin R. Determine P’s
previous X anchor point Al and P’s next x anchor point A2.
The point P may not have any anchor points, i.e., neither A1l
nor A2 exist.

Step 135. If neither of P’s anchor points exist, then proceed
with Step (13g). The point P will either have exactly zero
anchor points, or exactly two anchor points.

Step 13¢. Determine the original x-ratio xr between P, A1,
and A2. If xr is undefined, i.e., A1 and A2 have identical
original X coordinates and therefore the denominator of xr is
zero, then determine P’s hinted x coordinate by preserving the
original x-distance between point P and A1 and proceed with
Step (13g).

Step 13d. If xr is less than zero, then: (1) P’s original x
coordinate is closer to A1’s original x coordinate than to A2’s
original x coordinate, and (2) P’s original x coordinate does
not lie between the original x coordinates of the anchor

20

25

30

35

40

45

50

55

60

65

16

points. In this case, determine P’s hinted x coordinate by
preserving the original x-distance between point P and Al
and proceed with Step (13g).

Step 13e. If xr is greater than 1, then: (1) P’s original x
coordinate is closer to A2’s original x coordinate than to A1’s
original x coordinate, and (2) P’s original x coordinate does
not lie between the original x coordinates of the anchor
points. In this case, determine P’s hinted x coordinate by
preserving the original x-distance between point P and A2
and proceed with Step (13g).

Step 13/ xr lies in the range [0,1] and therefore P’s original
x coordinate: (1) is equal to A1’s original x coordinate, (2) is
equal to A2’s original x coordinate, or (3) lies between the
original x coordinates of the anchor points. Determine P’s
hinted x coordinate by linearly interpolating between the
hinted x coordinates of the anchor points.

Step 13g. Done.

For each radical R 215, perform grid fitting 263 on the
y-free points in R using the same method as described above
for x-free points, substituting y coordinates for x coordinates.

Step 14. Copy 264 the hinted x and y coordinates from
points to the output pen commands.

At this point, the output pen commands have been aligned
with the sampling grid, and rendering 240 can proceed.

Operating Environment

The invention is operational with numerous general pur-
pose or special purpose computing system environments or
configurations. Examples of well known computing systems,
environments, and/or configurations that are suitable for use
with the invention include, but are not limited to, personal
computers, server computers, handheld or laptop devices,
multiprocessor or multi-core systems, graphics processing
units (GPUs), application-specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), micro-
controller-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like. A monitor
or other type of display device is connected to any of the
above systems to enable the display of the alignment of the
invention.

As described above, the method performs feature detection
separately and independently for each radical, using indepen-
dent alignment zones. This improves the accuracy of feature
detection by preventing segment pairs from forming between
spatially-distant regions of the character. There are no depen-
dencies between radicals during feature detection. Conse-
quently, hardware and multi-core implementations can per-
form feature detection within radicals completely in parallel.
For example, one core of a multi-core processor can perform
feature detection on a particular radical and another core of
the multi-core processor can perform feature detection on a
different particular radical.

Also as described above, the method contains no depen-
dencies between horizontal segment pairs and vertical seg-
ment pairs. Consequently, hardware and multi-core imple-
mentations of the method can process horizontal segment
pairs and vertical segment pairs completely in parallel. For
example, one core of a multi-core processor can perform
alignment for the horizontal segment pairs and another core
of the multi-core processor can perform alignment for the
vertical segment pairs.

Although the invention has been described with reference
to certain preferred embodiments, it is to be understood that
various other adaptations and modifications can be made
within the spirit and scope of the invention. Therefore, it is the

US 8,107,729 B2

17

object of the append claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

We claim:

1. A method for aligning a character to a sampling grid of
an image, wherein an original path tracing an outline of the
character is specified by input pen commands having original
coordinates, comprising a processor for performing the
method, the method comprising the steps of:

determining points and contours of the input pen com-

mands;

determining an orientation of each contour;

constructing a first directed acyclic graph (DAG) indicat-

ing a hierarchical relationship of related contours;
determining radicals of a group of related contours using
the first DAG;

determining simple segments of the contours;

merging the simple segments independently for each radi-

cal;

determining segment pairs for the merged segments;

determining hinted coordinates for the segment pairs;

sorting the segment pairs and constructing a second DAG
for the sorted segment pairs;

resolving collisions between the segment pairs using the

second DAG;

determining x-free points and y-free points for each radi-

cal; and

fitting the segments pairs, the x-free points, and the y-free

points to the sampling grid independently for each radi-
cal and storing a result of the fitting in output pen com-
mands having the hinted coordinates to align the outline
of the character to the sampling grid of the image.

2. The method of claim 1, wherein the radicals are pro-
cessed in parallel.

20

25

30

18

3. The method of claim 1, wherein the sampling grid is a
pixel grid of the image and wherein the image is displayed on
a screen.

4. The method of claim 1, wherein the sampling grid is a
sub-pixel grid of the image and wherein the image is dis-
played on a screen.

5. The method of claim 1, further comprising:

rendering the output pen commands.

6. The method of claim 1, wherein the resolving traverses
the second DAG in a greedy bottom-up process.

7. The method of claim 1, wherein topmost and bottom-
most horizontal segments pairs and leftmost and rightmost
vertical segments pairs are aligned to nearest grid points in the
sampling grid.

8. The method of claim 1, wherein the fitting further com-
prises:

determining an original pair width and an adjusted pair

width; and

fitting the segments to the sampling grid using the original

pair width and the adjusted pair width.

9. The method of claim 1, wherein the fitting further com-
prises:

determining previous x anchor points and next x anchor

points for the x-free points in each radical; and

fitting the x-free points to the sampling grid using the

previous x anchor points and the next x anchor points.

10. The method of claim 1, wherein the fitting further
comprises:

determining previous y anchor points and next y anchor

points for the y-free points in each radical; and

fitting the y-free points to the sampling grid using the

previous y anchor points and the next y anchor points.

#* #* #* #* #*

