Efficient Estimation of 3D Euclidean Distance Fields from 2D Range Images

Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories

Our Contribution

- An efficient method for computing 3D distance fields from one or more 2D range images
 - Use Euclidean distance faster, more accurate, less memoryMuch of the prior art uses line-of-sight or projected distances
 - Perform most of the computation in a preprocessing step in the 2D coordinate space of each range image
 - Substantial reduction in computation
 - 10-100x faster than the prior art
 - Use Adaptively Sampled Distance Fields (ADFs)
 - Reduces distance evaluations and memory requirements

Distance Fields

- An object's distance field represents, for any point in space, the distance from that point to the object
- The distance can be signed to distinguish between the inside and outside of the object
- The metric used to measure distance can take many forms, but minimum Euclidean distance is common

History of Distance Fields

- Distance fields are a specific example of implicit functions (see Bloomenthal 1997)
- Distance fields have many applications

- CAD/CAM

- Ricci 1973, Rockwood 1989, Breen 1990, Schroeder et al. 1994, Perry and Frisken 2001
- Medical imaging and surgical simulation
 Blum 1973, Raya and Udupa 1990, Payne and Toga 1990, Jones and Chen 1995, Szeliski and Lavalle 1996, Frisken-Gibson 1999
- Modeling deformation and animating deformable models
 Bloomenthal and Wyville 1990, Bloomenthal and Shoemake 1991, Payne and Toga 1992, Gascuel 1993, Whitaker 1995, Sethian 1996, Cani-Gascuel 1998, DesBrun and Cani-Gascuel 1998, Breen 1998, Fisher and Lin 2001
- Scan conversion or 'voxelization'
 Payne and Toga 1992, Jones 1996, Gibson 1998, Sramek and Kaufman 1999
- Robotics
- (e.g., Koditschek 1989

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Sampled Volumes - Efficiency

- Exploit graphics hardware to compute distances
- Restrict distance computations to near the object surface (shell or narrow band methods)
 - Curless 1996, Jones 1996, Desbrun 1998, Whitaker 1998, Jones 2001, Zhao et al. 2001, Kimmel and Sethian 1996, Breen et al. 1998, and Fisher 2001
 - Can propagate distances outside the shell using
 - fast distance transforms
 - fast marching methods from level sets
- Use classic, or 3-color, octrees to reduce distance evaluations
 - Szeliski and Lavalle 1996, Wheeler 1998, and Strain 1999

Adaptively Sampled Distance Fields

- Sample the distance field adaptively and store the distances in a spatial hierarchy (e.g., octree)
- Adaptive sampling is detail-directed
 - Sample the distance field according to local frequency content rather than whether or not a surface is present
 Frisken et al. 2000, Perry and Frisken 2001
 - Substantially fewer distance evaluations and less memory requirements than a 3-color octree
- Provides high quality surfaces, efficient processing, and a reasonable memory footprint
 - A practical representation of distance fields

Related Work

• Reconstructing 3D models using distance fields from

Unorganized surface points Hoppe et al. 1992, Edelsbrunner 2002, Bajaj et al. 1995, Boissonnat and Cazals 2000, Carr et al. 2001

- Range surfaces

- Curless and Levoy 1996, Hilton et al. 1996, Wheeler et al. 1998, Perry and Frisken 2001, Sagawa et al. 2001
- Weighted averaging to combine distances from multiple scans
- Methods to
 - Compress the volume
 - Reduce the number of distance computations
- Fill holes near occluded regions separately

- Range images

- Whitaker 1998, Zhao et al. 2001
- Use line-of-sight distances
- Use level set methods to reduce scanner noise

Euclidean vs. Non-Euclidean

- Range images provide line-of-sight or projected distances to the surface
 - Can be used directly to reconstruct the 3D model
 - e.g., Curless and Levoy 1996, and Whitaker 1998
- However
 - Line-of-sight and projected distances are not minimum Euclidean distances
 - Can introduce artifacts in the reconstructed surface
 - Euclidean distances can be exploited to provide
 - More efficient processing and memory usage

Range Data is Non-Euclidean

Projected Distances

- The projected and Euclidean distance fields have the same iso-surface but different gradient fields
 - Problematic for methods that use the gradient to evolve a surface towards the zero-value iso-surface
- Artifacts arise when combining multiple scans using windowed, weighted, averaging

Range Data is Non-Euclidean

• Cliffs and Occlusions

- Projected distances in the range image are discontinuous near cliffs and occlusions
 - Produces abutting large positive and large negative distances along the cliff face, resulting in excessive ADF cell subdivision near cliffs

Why Euclidean Distances?

Accuracy

- Off-surface gradient points to the closest surface point
- Fewer artifacts when multiple scans are combined using windowed weighted averaging

Efficiency

- Cell size and distance values can be used to terminate adaptive subdivision of interior and exterior cells
 - Faster generation of the ADF (and hence the model)
 - Better than 10x fewer distance evaluations
 - Significant reduction in temporary storage
- Eliminate distance field discontinuities near cliffs
 - Smaller ADF

Correcting Projected Distances

• Approach

- Near planar surfaces, projected distance is related to minimum Euclidean distance according to
 - $\mathbf{d}_{t} = \mathbf{d}_{p} * \cos(\theta) = |\mathbf{d}_{p} / |\nabla(\mathbf{d}_{p})|$
- *Correct* the projected distance field near relatively planar regions of the surface by dividing the projected distance by the magnitude of the local gradient of the projected distance field

Correcting Projected Distances

- Observation
 - The projected distance decreases at a constant rate along rays perpendicular to the range image
 - The gradient of the projected distance field is constant along these rays

 The gradient of the 3D projected distance field can be represented by a 2D field in the plane of the range image

Correcting Distances Near Cliffs

- Computing cliff distances requires searching each range image for the closest cliff in 3D space
 - Too slow even if we
 - Locate *cliff pixels* adjacent to discontinuities in the range image in a pre-processing step,
 - Bin cliff pixels in a spatial hierarchy, AND
 - Use fast search techniques

Correcting Distances Near Cliffs

- Observation
 - Cliff distances can be computed from the horizontal distance to the cliff and the vertical distance to the cliff top or bottom

- The horizontal distances can be pre-computed from the range image and stored in an annotated 2D image, or *cliffmap*, which also encodes the heights of the top and bottom of the nearest cliff

Correcting Distances Near Cliffs

• Approach

- Create a 2D cliffmap for the range image in a preprocessing step
- During ADF generation
 - Interpolate the cliffmap to determine the horizontal and vertical distances to the top and bottom of the nearest cliff
 - Compute the cliff distance from the interpolated values

Correcting Distances Near Cliffs

Approach - Creating the cliffmap
 Step 1: Detect pixels at the tops and bottoms of each cliff

Range image

<section-header><section-header><list-item><list-item>

Summary of the Algorithm

- If necessary, convert line-of-sight range images to perpendicular projected distances
- Pre-compute gradient magnitude images
- Pre-compute cliffmaps
- Generate an octree-based ADF of the Euclidean distance field where
 - Distances are computed via the correction method
 - The simple combining scheme is used to choose the best distance from multiple range images

Results

- Timings measured on a 1GHz Pentium IV processor
- Timings include
 - Pre-computation of correction images
 - ADF generation
 - Rendering
- ADF resolution reported in equivalent volume size
 - Level 9 (2⁹) ADF has a resolution of 512³
 - Level 10 (2¹⁰) ADF has a resolution of 1024³

Synthetic Range Data (Single Scan)

Synthetic Range Data (z-buffer)

139 secs

214 secs

68 secs

1024 x 1024 x 1024

28 secs

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Comparison with Prior Art

- Wheeler et al. 1998
 - 52 minutes for 48 range images using an SGI Indy 5000
 - Used a 3-color octree equivalent in resolution to a 128 x 128 x 128 volume

Comparison with Prior Art

- Curless and Levoy 1996
 - 197 minutes for 61 range images on a 712 x 501 x 322 volume
 - 259 minutes for 71 range images on a 407 x 957 x 407 volume
 - 250 MHz MIPS R4400 processor

Comparison with Prior Art

• Our algorithm

- ~1 second per range image for an ADF equivalent in resolution to a 256 x 256 x 256 volume
- 3 to 7 seconds per range image for an ADF equivalent in resolution to a 512 x 512 x 512 volume
- 9 to 28 seconds per range image for an ADF equivalent in resolution to a 1024 x 1024 x 1024 volume
- Times are kO(N), k < 1, for N range images
- These timings and resolutions compare very favorably with the prior art

- Add probabilistic weighting functions for combining multiple scans
- Extend the approach to permit incremental model updating with each new scan
 - Display confidence in distance measures to guide interactive determination of the next-best-view

Acknowledgments

- Gene Sexton from Cyberware for range data
- The Digital Michelangelo Project at Stanford University for providing a triangle model of Michelangelo's David