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Focus

• Of the many approaches for reconstructing 3D 
models from range data, we focus on

– Implicit methods which
– Compute a 3D distance field from the range data
– Reconstruct the 3D model at an iso-surface of the distance field

– Range data in the form of range images which
– Exploits coherency between adjacent range values
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Our Contribution

• An efficient method for computing 3D distance fields 
from one or more 2D range images 

– Use Euclidean distance - faster, more accurate, less memory
• Much of the prior art uses line-of-sight or projected distances

– Perform most of the computation in a preprocessing step in 
the 2D coordinate space of each range image

• Substantial reduction in computation 
– 10-100x faster than the prior art

– Use Adaptively Sampled Distance Fields (ADFs)
• Reduces distance evaluations and memory requirements

Distance Fields

• An object’s distance field represents, for any point 
in space, the distance from that point to the object

• The distance can be signed to distinguish between 
the inside and outside of the object

• The metric used to measure 
distance can take many forms, 
but minimum Euclidean 
distance is common
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History of Distance Fields

• Distance fields are a specific example of implicit 
functions (see Bloomenthal 1997)

• Distance fields have many applications

– CAD/CAM
• Ricci 1973, Rockwood 1989, Breen 1990, Schroeder et al. 1994, Perry and Frisken 2001

– Medical imaging and surgical simulation
• Blum 1973, Raya and Udupa 1990, Payne and Toga 1990, Jones and Chen 1995, Szeliski and Lavalle 1996, 

Frisken-Gibson 1999

– Modeling deformation and animating deformable models
• Bloomenthal and Wyville 1990, Bloomenthal and Shoemake 1991, Payne and Toga 1992, Gascuel 1993, Whitaker 

1995, Sethian 1996, Cani-Gascuel 1998, DesBrun and Cani-Gascuel 1998, Breen 1998, Fisher and Lin 2001

– Scan conversion or ‘voxelization’
• Payne and Toga 1992, Jones 1996, Gibson 1998, Sramek and Kaufman 1999

– Robotics
• (e.g., Koditschek 1989)

Representing Distance Fields

• Implicit representation
– Distances computed at query points as needed

• Precise but slow for complex models

• Sampled volumes
– Distances computed and stored in a regular 3D grid 
– Interpolate distances at non-grid locations
– Requires adequate sampling for alias free reconstruction of 

detailed models 
• Large memory requirements
• Slow processing times
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Sampled Volumes - Efficiency 

• Exploit graphics hardware to compute distances 
– Hoff 1999, Hoff 2001

• Restrict distance computations to near the object 
surface (shell or narrow band methods)

– Curless 1996, Jones 1996, Desbrun 1998, Whitaker 1998, Jones 2001, Zhao et al. 2001, Kimmel and Sethian 1996,  
Breen et al. 1998, and Fisher 2001

– Can propagate distances outside the shell using 
• fast distance transforms 
• fast marching methods from level sets 

• Use classic, or 3-color, octrees to reduce distance 
evaluations

– Szeliski and Lavalle 1996, Wheeler 1998, and Strain 1999

3-Color Octrees

• A 3-color octree labels cells as interior, exterior, or 
boundary

• Boundary cells are always subdivided to the 
maximum level of the octree

Exterior

Interior

Boundary
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Adaptively Sampled Distance Fields

• Sample the distance field adaptively and store the 
distances in a spatial hierarchy (e.g., octree)

• Adaptive sampling is detail-directed
– Sample the distance field according to local frequency 

content rather than whether or not a surface is present 
• Frisken et al. 2000, Perry and Frisken 2001

– Substantially fewer distance evaluations and less memory 
requirements than a 3-color octree

• Provides high quality surfaces, efficient processing, 
and a reasonable memory footprint
– A practical representation of distance fields 

A 2D example

• 3-color quadtree - 20,813 cells
• Quadtree-based ADF using a bi-quadratic interpolant - 399 cells
• Equivalent regularly sampled volume (512x512) - 262,144 cells

3-color quadtree ADF
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Related Work

• Reconstructing 3D models using distance fields from 

– Unorganized surface points
• Hoppe et al. 1992, Edelsbrunner 2002, Bajaj et al. 1995, Boissonnat and Cazals 2000, Carr et al. 2001

– Range surfaces
• Curless and Levoy 1996, Hilton et al. 1996, Wheeler et al. 1998, Perry and Frisken 2001, Sagawa et al. 2001

• Weighted averaging to combine distances from multiple scans
• Methods to 

– Compress the volume
– Reduce the number of distance computations

• Fill holes near occluded regions separately

– Range images
• Whitaker 1998, Zhao et al. 2001

• Use line-of-sight distances
• Use level set methods to reduce scanner noise

Geometry of Range Scanning

• Our algorithm requires range images composed of 
perpendicular projected distances

Perpendicular projected distances
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Geometry of Range Scanning

• Some scanning systems (e.g., laser striping) require conversion 
from line-of-sight distances to perpendicular projected distances

Line-of-sight distances

Geometry of Range Scanning

• Some scanning systems (e.g., laser striping) require conversion 
from line-of-sight distances to perpendicular projected distances

Use scanner geometry to derive perpendicular 
distances from line-of-sight distances
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Geometry of Range Scanning

• Some scanning systems (e.g., laser striping) require conversion 
from line-of-sight distances to perpendicular projected distances

Back projection to the image plane

Geometry of Range Scanning

• Some scanning systems (e.g., laser striping) require conversion 
from line-of-sight distances to perpendicular projected distances

Resample the image plane
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Euclidean vs. Non-Euclidean

• Range images provide line-of-sight or projected 
distances to the surface
– Can be used directly to reconstruct the 3D model 
– e.g., Curless and Levoy 1996, and Whitaker 1998

• However 
– Line-of-sight and projected distances are not minimum 

Euclidean distances
• Can introduce artifacts in the reconstructed surface

– Euclidean distances can be exploited to provide
• More efficient processing and memory usage

Range Data is Non-Euclidean

• Projected Distances
– When the surface is at an angle to the scanning direction, 

the minimum Euclidean distance is smaller than the 
projected distance
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Range Data is Non-Euclidean

• Projected Distances
– The projected and Euclidean distance fields 

have the same iso-surface but different 
gradient fields

• Problematic for methods that use the 
gradient to evolve a surface towards 
the zero-value iso-surface

– Artifacts arise when combining multiple 
scans using windowed, weighted, 
averaging

Range Data is Non-Euclidean

• Cliffs and Occlusions
– Projected distances in the range image are discontinuous 

near cliffs and occlusions
• Produces abutting large positive and large negative distances 

along the cliff face, resulting in excessive ADF cell subdivision 
near cliffs
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Why Euclidean Distances?

• Accuracy
– Off-surface gradient points to the closest surface point
– Fewer artifacts when multiple scans are combined using 

windowed weighted averaging

• Efficiency
– Cell size and distance values can be used to terminate 

adaptive subdivision of interior and exterior cells
• Faster generation of the ADF (and hence the model) 
• Better than 10x fewer distance evaluations
• Significant reduction in temporary storage

– Eliminate distance field discontinuities near cliffs
• Smaller ADF

Correcting Projected Distances

• Approach
– Near planar surfaces, projected distance is related to 

minimum Euclidean distance according to
• dt = dp ∗ cos(θ) =  dp / |∇(dp)| 

– Correct the projected distance field near relatively planar 
regions of the surface by dividing the projected distance by 
the magnitude of the local gradient of the projected 
distance field



12

Correcting Projected Distances

Gradient field before
gradient magnitude 
correction

Gradient field after
gradient magnitude 
correction

Artifacts when 
combining multiple 
scans without
gradient magnitude 
correction

Artifact free with
gradient magnitude 
correction

Correcting Projected Distances

• Need to compute the gradient magnitude at each 
sample point during ADF generation

– Easy for a regularly sampled distance volume, BUT…

– Requires several additional distance evaluations for each 
sample point in the ADF that may not otherwise be needed 
(e.g., 6 additional distance evaluations when using central 
differences)

• Reduces generation speed significantly
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Correcting Projected Distances

• Observation 
– The projected distance decreases at a constant rate along 

rays perpendicular to the range image 
• The gradient of the projected distance field is constant along 

these rays

– The gradient of the 3D projected distance field can be 
represented by a 2D field in the plane of the range image

Correcting Projected Distances

• Method

– Pre-compute a 2D gradient magnitude correction image in 
the plane of the range image

– For each sample point during ADF generation
• Interpolate the 2D range image to compute a projected 

distance 
• Interpolate the 2D gradient magnitude correction image to 

derive the gradient magnitude
• Divide the projected distance by the gradient magnitude to 

approximate the Euclidean distance
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Correcting Distances Near Cliffs

• Approach
– Assume that the surface forms a continuous “cliff” across a 

range image discontinuity
• Eliminates holes in the reconstructed surface 
• Provides a reasonable guess at unobserved regions of the 

surface

Correcting Distances Near Cliffs

• Approach (continued)

– Locate the nearest cliff for each sample point and choose 
the smaller of the gradient magnitude corrected distance 
and the distance to the cliff

• When combining multiple scans, favor distances computed 
from range images with better views of an occluded region 
over cliff distances
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Correcting Distances Near Cliffs

• Computing cliff distances requires searching each 
range image for the closest cliff in 3D space
– Too slow even if we

• Locate cliff pixels adjacent to discontinuities in the range 
image in a pre-processing step,

• Bin cliff pixels in a spatial hierarchy, AND
• Use fast search techniques

Correcting Distances Near Cliffs

• Observation 
– Cliff distances can be 

computed from the 
horizontal distance to 
the cliff and the 
vertical distance to 
the cliff top or bottom

– The horizontal distances can be pre-computed from the 
range image and stored in an annotated 2D image, or 
cliffmap, which also encodes the heights of the top and 
bottom of the nearest cliff
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Correcting Distances Near Cliffs

• Approach
– Create a 2D cliffmap for the range image in a preprocessing 

step
– During ADF generation

• Interpolate the cliffmap to determine the horizontal and 
vertical distances to the top and bottom of the nearest cliff

• Compute the cliff distance from the interpolated values

Correcting Distances Near Cliffs

• Approach – Creating the cliffmap
– Step 1: Detect pixels at the tops and bottoms of each cliff

3D object Range image Cliff pixels
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Correcting Distances Near Cliffs

• Approach – Creating the cliffmap
– Step 2: Combine adjacent cliff pixels to form multi-pixel 

wide cliffs

Cliff pixels Multi-pixel wide cliffs

Correcting Distances Near Cliffs

• Approach – Creating the cliffmap
– Step 3: Compute unsigned 2D distances to cliffs using a 2D 

Euclidean distance transform

Multi-pixel wide cliffs Unsigned 2D distances
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Correcting Distances Near Cliffs

• Approach – Creating the cliffmap
– Step 4: Derive signed 2D distances to cliffs by negating 

distances on the outward facing side of cliffs

Unsigned 2D distances Signed 2D distances

Summary of Correction

• To estimate the 3D Euclidean distance directly from 
a 2D range image

– Compute the projected distance at p from the range image

– Correct the projected distance using the gradient 
magnitude at p interpolated from the pre-computed 2D 
gradient magnitude correction image

– Compute the distance to the nearest cliff using the pre-
computed 2D cliffmap

– Choose the smaller of the corrected projected distance and 
the cliff distance
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Effect of Correction

3D model

Corrected distance field

Projected distance field – cross section

Black line represents surface

Discontinuities where the surface is vertical

Compression of the field where the surface 
is at an angle to the scanning direction

Smooth and uniformly dense all along the 
surface and better approximates the 
Euclidean distance field

Combining Multiple Range Images

• Prior art uses weighted averaging for robust 
treatment of noise and image alignment error

– Curless and Levoy 1996, Hilton et al. 1996, Wheeler et al. 1998, and Whitaker 1998

• The results in this paper use a simple combining 
scheme that favors
– Corrected projected distances over cliff distances 
– Corrected projected distances with the

• Smallest gradient magnitude correction
• Smallest absolute value



20

Summary of the Algorithm

• If necessary, convert line-of-sight range images to 
perpendicular projected distances

• Pre-compute gradient magnitude images

• Pre-compute cliffmaps

• Generate an octree-based ADF of the Euclidean 
distance field where
– Distances are computed via the correction method
– The simple combining scheme is used to choose the best 

distance from multiple range images

Results

• Timings measured on a 1GHz Pentium IV processor

• Timings include 
– Pre-computation of correction images
– ADF generation
– Rendering

• ADF resolution reported in equivalent volume size
– Level 9 (29) ADF has a resolution of 5123

– Level 10 (210) ADF has a resolution of 10243
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Cyberware Echo Data (Single Scan)

10.21024 x 1024 x 1024

2.94512 x 512 x 512Redwood bark (right)

12.51024 x 1024 x 1024

3.85512 x 512 x 512Oak bark (left)

Time (seconds)Resolution

Synthetic Range Data (Single Scan)

8.91024 x 1024 x 1024

5.5512 x 512 x 512Waves (right)

9.31024 x 1024 x 1024

2.9512 x 512 x 512Pond ripples (left)

Time (seconds)Resolution
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Synthetic Range Data (z-buffer)

214 secs139 secs68 secs28 secs1024 x 1024 x 1024

63 secs36 secs18 secs7 secs512 x 512 x 512

10 scans6 scans3 scans1 scanResolution

Comparison with Prior Art

• Whitaker 1998 

– 20 minutes for 10 range images for a 140 x 140 x 140 
volume using a Sparc 10 workstation

– Timing is for the full reconstruction but “most of that time 
was spent on the initialization and resampling” of the 
distance volume

– Volumes larger than 140 x 140 x 140 caused thrashing
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Comparison with Prior Art

• Wheeler et al. 1998

– 52 minutes for 48 range images using an SGI Indy 5000

– Used a 3-color octree equivalent in resolution to a 128 x 
128 x 128 volume

Comparison with Prior Art

• Curless and Levoy 1996

– 197 minutes for 61 range images on a 712 x 501 x 322 volume

– 259 minutes for 71 range images on a 407 x 957 x 407 volume

– 250 MHz MIPS R4400 processor
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Comparison with Prior Art

• Our algorithm

– ~1 second per range image for an ADF equivalent in 
resolution to a 256 x 256 x 256 volume

– 3 to 7 seconds per range image for an ADF equivalent in 
resolution to a 512 x 512 x 512 volume

– 9 to 28 seconds per range image for an ADF equivalent in 
resolution to a 1024 x 1024 x 1024 volume

– Times are kO(N), k < 1, for N range images

• These timings and resolutions compare very 
favorably with the prior art

Future work

• Add probabilistic weighting functions for combining 
multiple scans

• Extend the approach to permit incremental model 
updating with each new scan

– Display confidence in distance measures to guide 
interactive determination of the next-best-view
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