Feline: Fast, Elliptical Lines for Anisotropic Texture Mapping

Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi

Outline

- What should texture mapping really do?
- Previous work
- Our work: Simple Feline
- Image gallery
- Conclusions
An Intuitive Diagram of Texture Mapping (stolen from Landsdale)

- Pixel filter is a window with variable transparency
- Filter weight at a point is degree of transparency
- A circular window views an elliptical texture area
- Adjacent filters overlap

Heckbert & Greene’s Elliptical Weighted Average (EWA)

- Assume perspective distortion is constant near pixel (99.9% true)
- Back mapping to screen space is a biquadratic
EWA Texturing Examples

- Nice definition to text without jaggies
- Few & faint Moiré artifacts

Lance Williams’ Mip-mapping with Trilinear Filtering

- Trilinear filter has (very) roughly circular contour lines, with a square footprint
Trilinear Texturing Examples

- 2^n trilinear probes along ellipse’s “major axis”
- Resulting filter is too short and mesa-like at best...

Texram (Best Case)
Texram (Worst Case)

... and jaggedly peaked at worst.

Texram Texturing Examples

Sharp text but with jaggies (aliasing)

Lots of swimming Moiré artifacts
Exact Feline: Use Ellipse Parameters

- n probes, Gaussian weighted, on major axis of ellipse
- Important Texram problems fixed
- But expensive setup comparable to EWA!

Simple Feline: Approximate Ellipse

- Approximate ellipse axes for cheaper setup
- Slightly underestimates major radius, overestimates minor radius (resulting in fewer, fatter probes)
Simple Feline: Reducing # of Probes

- Allow shortening of “major axis”
 - Extreme sensitivity, quickly causes aliasing
 - 3% decrease
- Allow widening probes
 - Causes blurring
 - Max of 16% (high-quality) or 31% (high-efficiency)
- Allow stretching distance between probes
 - Causes aliasing
 - Max of 15% (high-quality) or 36% (high-efficiency)

Simple Feline: Modest Probe Reduction

- Actual blur stretch of 15.6% (maximum allowed)
- Actual aliasing stretch of 7.0%
Simple Feline: “Texram Probe-Equivalent” Reduction

- Actual blur stretch of 31% (maximum allowed)
- Actual aliasing stretch of 26%

Simple Feline: “Texram Probe-Equivalent” with Gaussian Probes

- Blur stretch of 36%
- Slightly blurrier, but many fewer aliasing artifacts
Conclusions

- Feline compared to EWA:
 - High-Quality Feline's visual quality is comparable, using half the cycles/pixel and much smaller setup logic
- Feline compared to Texram:
 - High-quality images far superior, using more cycles/pixel
 - High-efficiency images superior, using same cycles/pixel
- Feline requires a tiny fraction of the die of a PC or next-generation game console graphics accelerator