A New Method For Numerical Constrained Optimization

Motivation

• The applicability of optimization methods is widespread, reaching into almost every activity in which numerical information is processed

• For a summary of applications and theory
 - See Fletcher “Practical Methods of Optimization”

• For numerous applications in computer graphics
 - See Goldsmith and Barr “Applying constrained optimization to computer graphics”

• In this sketch, we describe a method and not its application
Informal Problem Statement

• An ideal problem for constrained optimization
 - has a single measure defining the quality of a solution (called the *objective function* F)
 - plus some requirements upon that solution that must not be violated (called the *constraints* C_i)

• A constrained optimization method maximizes (or minimizes) F while satisfying the C_i’s

• Both F and C_i’s are functions of $x \in \mathbb{R}^N$, the input parameters to be determined

Informal Problem Statement

• Many flavors of optimization
 - x can be real-valued, integer, mixed
 - F and C_i’s can be linear, quadratic, nonlinear
 - F and C_i’s can be smooth (i.e., differentiable) or nonsmooth
 - F and C_i’s can be noisy or noise-free
 - methods can be globally convergent or global

• Our focus
 - globally convergent methods
 - real-valued, nonlinear, potentially nonsmooth, potentially noisy, constrained problems
Our Contribution

• A new method for constraint handling, called *partitioned performances*, that
 - can be applied to established optimization algorithms
 - can improve their ability to traverse constrained space

• A new optimization method, called *SPIDER*, that
 - applies partitioned performances to a new variation of the Nelder and Mead polytope algorithm

An observation leads to an idea

• Observation
 - Many constrained problems have optima that lie near constraint boundaries
 - Consequently, avoidance (or approximations) of constraints can hinder an algorithm’s path to the answer

• Idea
 - By allowing (and even *encouraging*) an optimization algorithm to move its vertices into constrained space, a more efficient and robust algorithm emerges
The idea leads to a method

- Constraints are partitioned (i.e., grouped) into multiple levels (i.e., categories)
- A constrained performance, independent of the objective function, is defined for each level
- A set of rules, based on these partitioned performances, specify the ordering and movement of vertices as they straddle constraint boundaries
- These rules are non-greedy, permitting vertices at a higher (i.e., better) level to move to a lower (i.e., worse) level

Partitioned Performances (Advantages)

- Do not use a penalty function and thus do not warp the performance surface
 - this avoids the possible ill-conditioning of the objective function typical in penalty methods
- Do not linearize the constraints as do other methods (e.g., SQP)
- Assume very little about the problem form
 - F and C_i’s can be nonsmooth (i.e., nondifferentiable) and highly nonlinear
Partitioning Constraints

• One effective partitioning of constraints
 - place simple limits on $x \in \mathbb{R}^N$ into level 1 (e.g., $x_1 \geq 0$)
 - place constraints which, when violated, produce singularities in F into level 1
 - all other constraints into level 2
 - and the objective function F into level 3

• Many different strategies for partitioning
 - just two levels: constrained and feasible
 - a level for every constraint, and a feasible level
 - dynamic partitioning (changing the level assignments during the search)

Computing Performance

• Assume a partitioning of F and the C_i’s into W levels $[L_1 \ldots L_w]$ with $L_w = \{ F \}$

• We define the \textit{partitioned performance} of a location $x \in \mathbb{R}^N$ as a 2-tuple $<P,L>$ consisting of a floating point scalar P and an integer level indicator L. P represents the “goodness” of x at level L.
Computing Performance

- To determine \(<P,L>\)
 - sum the constraint violations in each level
 - \(L\) is assigned to the first level, beginning at level 1, to have any violation and \(P\) is assigned the sum of the violations at \(L\)
 - if no violations occur, \(L \leftarrow W\) and \(P \leftarrow F(x)\)

Comparing Performances

- The partitioned performances of two locations \(x_1\) \((<P_1,L_1>)\) and \(x_2\) \((<P_2,L_2>)\) are compared as follows:
 - if \((L_1 = L_2)\)
 - if \((P_1 > P_2)\) \(x_1\) is better, otherwise \(x_2\) is better
 - if \((L_1 > L_2)\)
 - \(x_1\) is better
 - if \((L_2 > L_1)\)
 - \(x_2\) is better
SPIDER Method

- Applies partitioned performances to a new variation of the Nelder and Mead polytope algorithm
- Rules for ordering and movement using partitioned performances are demonstrated

What is a “SPIDER”?

- Assuming we are maximizing an n-dimensional objective function F, SPIDER consists of $n+1$ “legs”, where
 - each leg contains its position in space
 - associated with each leg is a partitioned performance
What is a “SPIDER”?

When \(n = 2 \), a triangle
When \(n = 3 \), a tetrahedron

What does SPIDER do?

- Crawl: each leg is at a known “elevation” on the performance “hill”, and it is SPIDER’s task to crawl up the hill and maximize performance.
How SPIDER walks

- By moving each leg through the centroid of the remaining legs

Before reflection and expansion

![Diagram of leg before and after reflection and expansion]

After reflection and expansion

How SPIDER walks

- Repeat N times
 - Sort legs of SPIDER, from worst to best. Label worst and best legs.
 - For each leg L, in worst to best order
 - Determine centroid
 - Compute position and performance of a trial leg, \(L_{\text{trial}} \)
 - if L is not the best leg, reflect and expand through centroid
 - if L is the best leg, reflect and expand away from centroid
 - If move successful, accept trial, relabel worst and best leg if required
 - EndFor
 - Shrink SPIDER if best leg has not improved
 - Rebuild SPIDER if successive shrinks exceed threshold
- EndRepeat
Rules for centroid computation

- Exclude leg being moved (L)
- Exclude legs at a lower level than L
 - this helps to give SPIDER a better sense of direction along constraint boundaries

Rules for moving a non-best leg

- Same level (level of L_{\text{trial}} = = \text{level of L})
 - accept trial leg if
 - P value of L_{\text{trial}} > P value of L
- Going down levels (level of L_{\text{trial}} < \text{level of L})
 - accept trial leg if its better than the worst leg
- Going up levels (level of L_{\text{trial}} > \text{level of L})
 - accept trial leg if its better than the best leg
Rules for moving the best leg

- It must improve in performance in order to move
- This gives SPIDER the ability to “straddle” and thus track along a constraint boundary

Rules for shrinking SPIDER

- Shrink the vertices at the same level as the best leg toward the best leg, and flip (as well as shrink) vertices at lower levels over the best leg
- Flipping helps to move legs across a constraint boundary towards feasibility
A Matlab Test Problem

• Sequential Quadratic Programming (SQP) methods represent the state-of-the-art in nonlinear constrained optimization

• SQP methods out perform every other tested method in terms of efficiency, accuracy, and percentage of successful solutions, over a large number of test problems

• On a Matlab test problem
 - Matlab SQP Implementation, 96 function calls
 - SPIDER, 108 function calls
The End